English [en], .epub, 🚀/lgli/lgrs/zlib, 59.3MB, 📘 Book (non-fiction), lgrsnf/Advanced_Linear_and_Matrix_Algebra_by_Nathaniel_Johnston.epub
Advanced Linear and Matrix Algebra 🔍
Springer, Springer Nature Switzerland AG, 1st ed. 2021, Cham, 2021
Nathaniel Johnston 🔍
description
Advanced Linear and Matrix Algebra emphasizes the interplay between algebra and geometry to motivate the study of advanced linear algebra techniques. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. Building on a first course in linear algebra, this book offers readers a deeper understanding of abstract structures, matrix decompositions, multilinearity, and tensors. Concepts draw on concrete examples throughout, offering accessible pathways to advanced techniques.Beginning with a study of vector spaces that includes coordinates, isomorphisms, orthogonality, and projections, the book goes on to focus on matrix decompositions. Numerous decompositions are explored, including the Shur, spectral, singular value, and Jordan decompositions. In each case, the author ties the new technique back to familiar ones, to create a coherent set of tools. Tensors and multilinearity complete the book, with a study of the Kronecker product, multilinear transformations, and tensor products. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from the QR and Cholesky decompositions, to matrix-valued linear maps and semidefinite programming. Exercises of all levels accompany each section.Advanced Linear and Matrix Algebra offers students of mathematics, data analysis, and beyond the essential tools and concepts needed for further study. The engaging color presentation and frequent marginal notes showcase the author's visual approach. A first course in proof-based linear algebra is assumed. An ideal preparation can be found in the author's companion volume, Introduction to Linear and Matrix Algebra.
Alternative author
Johnston, Nathaniel
Alternative publisher
Springer International Publishing : Imprint: Springer
Alternative publisher
Springer International Publishing AG
Alternative edition
Introduction to linear and matrix algebra, Cham, 2021
Alternative edition
Switzerland, Switzerland
Alternative edition
1st, US, 2021
Alternative edition
2, 20210519
metadata comments
epub is bad, a better version at 392B0FC6CBD018357DD0AB313B315C90
metadata comments
lg3011506
Alternative description
This textbook emphasizes the interplay between algebra and geometry to motivate the study of advanced linear algebra techniques. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. Building on a first course in linear algebra, this book offers readers a deeper understanding of abstract structures, matrix decompositions, multilinearity, and tensors. Concepts draw on concrete examples throughout, offering accessible pathways to advanced techniques. Beginning with a study of vector spaces that includes coordinates, isomorphisms, orthogonality, and projections, the book goes on to focus on matrix decompositions. Numerous decompositions are explored, including the Shur, spectral, singular value, and Jordan decompositions. In each case, the author ties the new technique back to familiar ones, to create a coherent set of tools. Tensors and multilinearity complete the book, with a study of the Kronecker product, multilinear transformations, and tensor products. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from the QR and Cholesky decompositions, to matrix-valued linear maps and semidefinite programming. Exercises of all levels accompany each section. Advanced Linear and Matrix Algebra offers students of mathematics, data analysis, and beyond the essential tools and concepts needed for further study. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. A first course in proof-based linear algebra is assumed. An ideal preparation can be found in the author’s companion volume, Introduction to Linear and Matrix Algebra.
date open sourced
2021-05-20
Read more…

❌ This file might have issues, and has been hidden from a source library. Sometimes this is by request of a copyright holder, sometimes it is because a better alternative is available, but sometimes it is because of an issue with the file itself. It might still be fine to download, but we recommend first searching for an alternative file. More details:

If you still want to download this file, be sure to only use trusted, updated software to open it.

🚀 Fast downloads

Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️

🐢 Slow downloads

From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)

  • For large files, we recommend using a download manager to prevent interruptions.
    Recommended download managers: JDownloader
  • You will need an ebook or PDF reader to open the file, depending on the file format.
    Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre
  • Use online tools to convert between formats.
    Recommended conversion tools: CloudConvert
  • You can send both PDF and EPUB files to your Kindle or Kobo eReader.
    Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle”
  • Support authors and libraries
    ✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
    📚 If this is available at your local library, consider borrowing it for free there.