English [en], .pdf, 🚀/lgli/lgrs/nexusstc/zlib, 131.2MB, 📘 Book (non-fiction), lgrsnf/N:\!genesis_files_for_add\_add\ftp2020-10\Pearson eLibrary\1187644802_5c6e895405e2c03b933f10fc.pdf
Concepts of Genetics, Global Edition 🔍
Pearson; Langara College, Eleventh edition, 2019
Cummings, Michael R.; Klug, William S.; Palladino, Michael Angelo; Spencer, Charlotte A 🔍
description
Concepts of Genetics, Eleventh Edition emphasizes the fundamental ideas of genetics, while exploring modern techniques and applications of genetic analysis. The best-selling text has a strong problem-solving approach, and this edition has been extensively updated with relevant, cutting-edge coverage of emerging topics in genetics.
Note You are purchasing a standalone product; MasteringGenetics(TM)does not come packaged with this content. If you would like to purchase both the physical text and MasteringGenetics search for ISBN-10: 0321948475/ISBN-13: 9780321948472. That package includes ISBN-10: 0321948912/ISBN-13: 9780321948915 and ISBN-10: 0133863298/ISBN-13: 9780133863291. MasteringGenetics is not a self-paced technology and should only be purchased when required by an instructor.
Note You are purchasing a standalone product; MasteringGenetics(TM)does not come packaged with this content. If you would like to purchase both the physical text and MasteringGenetics search for ISBN-10: 0321948475/ISBN-13: 9780321948472. That package includes ISBN-10: 0321948912/ISBN-13: 9780321948915 and ISBN-10: 0133863298/ISBN-13: 9780133863291. MasteringGenetics is not a self-paced technology and should only be purchased when required by an instructor.
Alternative filename
lgli/N:\!genesis_files_for_add\_add\ftp2020-10\Pearson eLibrary\1187644802_5c6e895405e2c03b933f10fc.pdf
Alternative filename
nexusstc/Concepts of genetics/d360a13004e12bc3060e68498b2894d5.pdf
Alternative title
Concepts of Genetics Plus Mastering Genetics with eText -- Access Card Package (11th Edition) (Klug et al. Genetics Series)
Alternative title
Klug: Mast Pear eTex Valu Acce Ca_11 (11th Edition)
Alternative author
Klug, William S.; Cummings, Michael R.; Spencer, Charlotte A.; Palladino, Michael A.; Killian, Darrell
Alternative author
Darrell Killian; William S Klug; Michael A Palladino; Charlotte Spencer; Michael R Cummings
Alternative author
William S. Klug; Michael R. Cummings; Charlotte A. Spencer; Michael Angelo Palladino
Alternative author
PALLADINO MICHAEL A. ET.AL
Alternative publisher
Addison-Wesley Longman, Incorporated
Alternative publisher
Globe Fearon Educational Publishing
Alternative publisher
Financial Times Prentice Hall
Alternative publisher
Pearson Education, Limited
Alternative publisher
Pearson/Benjamin Cummings
Alternative publisher
Benjamin-Cummings Pub Co
Alternative publisher
Longman Publishing
Alternative publisher
Pearson Educación
Alternative publisher
Pearson Longman
Alternative publisher
Cengage Gale
Alternative publisher
Adobe Press
Alternative edition
United Kingdom and Ireland, United Kingdom
Alternative edition
11th ed. Global Edition, New Jersey, 2014
Alternative edition
Pearson Education Limited, Boston, 2016
Alternative edition
United States, United States of America
Alternative edition
Eleventh edition, Edinburgo Gate, 2016
Alternative edition
Eleventh edition, Boston, 2015
Alternative edition
11th ed, San Francisco, 2015
Alternative edition
11th ed, Boston, 2015
Alternative edition
11, 2014-11-13
Alternative edition
Sep 15, 2014
Alternative edition
Sep 21, 2016
metadata comments
lg2863393
metadata comments
{"edition":"eleventh edition","isbns":["0321948912","1292077263","9780321948915","9781292077260"],"last_page":896,"publisher":"Pearson; Langara College"}
Alternative description
Cover......Page 1
Title Page......Page 2
Copyright Page......Page 3
Dedication......Page 4
About the Authors......Page 5
Brief Contents......Page 6
Explore Cutting Edge Topics......Page 7
Explore Classic and Modern Approaches......Page 8
Learn and Practice Problem Solving......Page 9
Succeed with MasteringGenetics......Page 11
Contents......Page 12
Preface......Page 29
1. Introduction to Genetics......Page 36
1600–1850: The Dawn of Modern Biology......Page 37
Mendel’s Work on Transmission of Traits......Page 38
Genetic Variation......Page 39
1.3. Discovery of the Double Helix Launched the Era of Molecular Genetics......Page 40
Gene Expression: From DNA to Phenotype......Page 41
Linking Genotype to Phenotype: Sickle-Cell Anemia......Page 42
Plants, Animals, and the Food Supply......Page 43
1.6. Genomics, Proteomics, and Bioinformatics are New and Expanding Fields......Page 44
1.7. Genetic Studies Rely on the Use of Model Organisms......Page 45
Model Organisms and Human Diseases......Page 46
Genetics and Society......Page 47
Internet Resources for Learning About Genomics, Bioinformatics, and Proteomics......Page 48
Summary Points......Page 49
Problems and Discussion Questions......Page 50
2. Mitosis and Meiosis......Page 51
2.1. Cell Structure Is Closely Tied to Genetic Function......Page 52
2.2. Chromosomes Exist in Homologous Pairs in Diploid Organisms......Page 54
Interphase and the Cell Cycle......Page 56
Prophase......Page 57
Anaphase......Page 59
Cell-Cycle Regulation and Checkpoints......Page 60
An Overview of Meiosis......Page 61
The First Meiotic Division: Prophase I......Page 63
The Second Meiotic Division......Page 64
2.5. The Development of Gametes Varies in Spermatogenesis Compared to Oogenesis......Page 66
2.7. Electron Microscopy Has Revealed the Physical Structure of Mitotic and Meiotic Chromosomes......Page 68
Summary Points......Page 70
Insights and Solutions......Page 71
Problems and Discussion Questions......Page 72
3. Mendelian Genetics......Page 75
3.1. Mendel Used a Model Experimental Approach to Study Patterns of Inheritance......Page 76
Mendel’s First Three Postulates......Page 77
Mendel’s Analytical Approach......Page 78
Punnett Squares......Page 79
The Testcross: One Character......Page 80
Mendel’s Fourth Postulate: Independent Assortment......Page 81
The Testcross: Two Characters......Page 82
3.4. The Trihybrid Cross Demonstrates That Mendel’s Principles Apply to Inheritance of Multiple Traits......Page 84
The Forked-Line Method, or Branch Diagram......Page 85
3.5. Mendel’s Work was Rediscovered in the Early Twentieth Century......Page 86
Unit Factors, Genes, and Homologous Chromosomes......Page 87
3.7. Laws of Probability Help to Explain Genetic Events......Page 89
The Binomial Theorem......Page 90
Chi-Square Calculations and the Null Hypothesis......Page 91
Interpreting Probability Values......Page 92
Pedigree Conventions......Page 94
Pedigree Analysis......Page 95
How Mendel’s Peas Become Wrinkled: A Molecular Explanation......Page 96
Online Mendelian Inheritance in Man......Page 97
Summary Points......Page 98
Insights and Solutions......Page 99
Problems and Discussion Questions......Page 101
4. Extensions of Mendelian Genetics......Page 105
4.1. Alleles Alter Phenotypes in Different Ways......Page 106
4.3. Neither Allele is Dominant in Incomplete, or Partial, Dominance......Page 107
4.4. In Codominance, the Influence of Both Alleles in a Heterozygote Is Clearly Evident......Page 108
The A and B Antigens......Page 109
The Bombay Phenotype......Page 110
4.6. Lethal Alleles Represent Essential Genes......Page 111
The Molecular Basis of Dominance, Recessiveness, and Lethality: The Agouti Gene......Page 112
4.7. Combinations of Two Gene Pairs with Two Modes of Inheritance Modify the 9:3:3:1 Ratio......Page 113
4.8. Phenotypes are Often Affected by More Than One Gene......Page 114
Epistasis......Page 115
Novel Phenotypes......Page 118
4.9. Complementation Analysis Can Determine if Two Mutations Causing a Similar Phenotype are Alleles of the Same Gene......Page 120
4.10. Expression of a Single Gene May Have Multiple Effects......Page 121
X-Linkage in Drosophila......Page 122
X-Linkage in Humans......Page 123
4.12. In Sex-Limited and Sex-Influenced Inheritance, an Individual’s Sex Influences the Phenotype......Page 124
4.13. Genetic Background and the Environment May Alter Phenotypic Expression......Page 125
Temperature Effects—An Introduction to Conditional Mutations......Page 126
Nutritional Effects......Page 127
Genomic (Parental) Imprinting and Gene Silencing......Page 128
Improving the Genetic Fate of Purebred Dogs......Page 129
Case Study: But he isn’t Deaf......Page 130
Insights and Solutions......Page 131
Problems and Discussion Questions......Page 133
5. Chromosome Mapping in Eukaryotes......Page 139
5.1. Genes Linked on the Same Chromosome Segregate Together......Page 140
The Linkage Ratio......Page 141
Sturtevant and Mapping......Page 143
Single Crossovers......Page 145
Multiple Exchanges......Page 146
Three-Point Mapping in Drosophila......Page 147
Determining the Gene Sequence......Page 149
A Mapping Problem in Maize......Page 151
Interference and the Coefficient of Coincidence......Page 154
5.5. Drosophila Genes Have Been Extensively Mapped......Page 155
5.6. Lod Score Analysis and Somatic Cell Hybridization Were Historically Important in Creating Human Chromosome Maps......Page 156
5.7. Chromosome Mapping is Now Possible Using DNA Markers and Annotated Computer Databases......Page 158
5.8. Crossing Over Involves a Physical Exchange Between Chromatids......Page 159
5.9. Exchanges Also Occur between Sister Chromatids during Mitosis......Page 160
5.10. Did Mendel Encounter Linkage?......Page 161
Case Study: Links to Autism......Page 162
Insights and Solutions......Page 163
Problems and Discussion Questions......Page 165
6. Genetic Analysis and Mapping in Bacteria and Bacteriophages......Page 169
6.1. Bacteria Mutate Spontaneously and Grow at an Exponential Rate......Page 170
Conjugation in Bacteria: The Discovery of F+ and F- Strains......Page 171
Hfr Bacteria and Chromosome Mapping......Page 173
The F' State and Merozygotes......Page 176
6.3. Rec Proteins are Essential to Bacterial Recombination......Page 178
6.4. The F Factor Is an Example of a Plasmid......Page 179
The Transformation Process......Page 180
6.6. Bacteriophages are Bacterial Viruses......Page 181
The Plaque Assay......Page 182
The Lederberg–Zinder Experiment......Page 184
The Nature of Transduction......Page 185
Bacteriophage Mutations......Page 186
Mapping in Bacteriophages......Page 187
The rll Locus of Phage T4......Page 188
Recombinational Analysis......Page 189
Deletion Testing of the rll Locus......Page 190
The rll Gene Map......Page 191
From Cholera Genes to Edible Vaccines......Page 193
Insights and Solutions......Page 194
Problems and Discussion Questions......Page 196
7. Sex Determination and Sex Chromosomes......Page 199
Zea Mays......Page 200
Caenorhabditis Elegans......Page 202
7.2. X and Y Chromosomes Were First Linked to Sex Determination Early in the Twentieth Century......Page 203
7.3. The Y Chromosome Determines Maleness in Humans......Page 204
Klinefelter and Turner Syndromes......Page 205
47,XYY Condition......Page 206
The Y Chromosome and Male Development......Page 207
7.4. The Ratio of Males to Females in Humans Is Not 1.0......Page 209
Barr Bodies......Page 210
The Lyon Hypothesis......Page 211
The Mechanism of Inactivation......Page 212
7.6. The Ratio of X Chromosomes to Sets of Autosomes Determines Sex in Drosophila......Page 214
Dosage Compensation in Drosophila......Page 215
7.7. Temperature Variation Controls Sex Determination in Reptiles......Page 217
Drosophila Sxl Gene Induces Female Development......Page 216
A Question of Gender: Sex Selection in Humans......Page 219
Insights and Solutions......Page 220
Problems and Discussion Questions......Page 221
8. Chromosome Mutations: Variation in Number and Arrangement......Page 223
Monosomy......Page 224
Trisomy......Page 225
Down Syndrome: Trisomy 21......Page 226
Mouse Models of Down Syndrome......Page 227
The Origin of the Extra 21st Chromosome in Down Syndrome......Page 228
8.3. Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, Is Prevalent in Plants......Page 230
Autopolyploidy......Page 231
Allopolyploidy......Page 232
Endopolyploidy......Page 233
8.4. Variation Occurs in the Composition and Arrangement of Chromosomes......Page 234
Cri du Chat Syndrome in Humans......Page 235
Gene Redundancy and Amplification—Ribosomal RNA Genes......Page 236
The Role of Gene Duplication in Evolution......Page 237
8.7. Inversions Rearrange the Linear Gene Sequence......Page 238
Consequences of Inversions during Gamete Formation......Page 239
8.8. Translocations Alter the Location of Chromosomal Segments in the Genome......Page 240
Translocations in Humans: Familial Down Syndrome......Page 241
Fragile-X Syndrome......Page 242
The Link Between Fragile Sites and Cancer......Page 243
Down Syndrome and Prenatal Testing—The New Eugenics?......Page 244
Insights and Solutions......Page 245
Problems and Discussion Questions......Page 246
9. Extranuclear Inheritance......Page 249
Chloroplast Mutations in Chlamydomonas......Page 250
Mitochondrial Mutations: Early Studies in Neurospora and Yeast......Page 251
Organelle DNA and the Endosymbiotic Theory......Page 253
Molecular Organization and Gene Products of Chloroplast DNA......Page 254
Molecular Organization and Gene Products of Mitochondrial DNA......Page 255
9.3. Mutations in Mitochondrial DNA Cause Human Disorders......Page 256
Mitochondria, Human Health, and Aging......Page 257
Future Prevention of the Transmission of mtDNA-Based Disorders......Page 258
Lymnaea Coiling......Page 259
Embryonic Development in Drosophila......Page 260
Mitochondrial DNA and the Mystery of the Romanovs......Page 261
Case Study: A Twin Difference......Page 262
Problems and Discussion Questions......Page 263
10. DNA Structure and Analysis......Page 266
10.2. Until 1944, Observations Favored Protein as the Genetic Material......Page 267
Transformation: Early Studies......Page 268
Transformation: The Avery, MacLeod, and McCarty Experiment......Page 269
The Hershey–Chase Experiment......Page 271
Transfection Experiments......Page 272
Direct Evidence: Recombinant DNA Studies......Page 274
Nucleotides: Building Blocks of Nucleic Acids......Page 275
Polynucleotides......Page 277
10.7. The Structure of DNA Holds the Key to Understanding Its Function......Page 278
Base-Composition Studies......Page 279
The Watson–Crick Model......Page 280
10.8. Alternative Forms of DNA Exist......Page 284
10.9. The Structure of RNA is Chemically Similar to DNA , but Single Stranded......Page 285
Denaturation and Renaturation of Nucleic Acids......Page 286
Fluorescent in situ Hybridization (FISH)......Page 287
Reassociation Kinetics and Repetitive DNA......Page 288
Electrophoresis of Nucleic Acids......Page 289
Introduction to Bioinformatics: BLAST......Page 290
Summary Points......Page 291
Insights and Solutions......Page 292
Problems and Discussion Questions......Page 293
11. DNA Replication and Recombination......Page 296
11.1. DNA Is Reproduced by Semiconservative Replication......Page 297
The Meselson–Stahl Experiment......Page 298
Semiconservative Replication in Eukaryotes......Page 299
Origins, Forks, and Units of Replication......Page 300
DNA Polymerase I......Page 301
DNA Polymerase II, III, IV, and V......Page 302
The DNA Pol III Holoenzyme......Page 303
Unwinding the DNA Helix......Page 304
Continuous and Discontinuous DNA Synthesis......Page 305
Concurrent Synthesis Occurs on the Leading and Lagging Strands......Page 306
11.4. A Coherent Model Summarizes DNA Replication......Page 307
Lethal Knockouts of DNA Ligase Genes......Page 308
Initiation at Multiple Replication Origins......Page 310
Replication through Chromatin......Page 311
Replication at the Telomere......Page 312
Models of Homologous Recombination......Page 314
Gene Conversion, a Consequence of Homologous Recombination......Page 316
Telomeres: The Key to Immortality?......Page 318
Insights and Solutions......Page 319
Problems and Discussion Questions......Page 320
12. DNA Organization in Chromosomes......Page 323
12.1. Viral and Bacterial Chromosomes Are Relatively Simple DNA Molecules......Page 324
12.2. Supercoiling Facilitates Compaction of the DNA of Viral and Bacterial Chromosomes......Page 325
Polytene Chromosomes......Page 327
Lampbrush Chromosomes......Page 328
Chromatin Structure and Nucleosomes......Page 329
Chromatin Remodeling......Page 331
12.5. Chromosome Banding Differentiates Regions along the Mitotic Chromosome......Page 333
12.6. Eukaryotic Genomes Demonstrate Complex Sequence Organization Characterized by Repetitive DNA......Page 334
Satellite DNA......Page 335
Middle Repetitive Sequences: VNTRs and STRs......Page 336
12.7. The Vast Majority of a Eukaryotic Genome Does Not Encode Functional Genes......Page 337
Database of Genomic Variants: Structural Variations in the Human Genome......Page 338
Insights and Solutions......Page 339
Problems and Discussion Questions......Page 340
13. The Genetic Code and Transcription......Page 343
13.2. Early Studies Established the Basic Operational Patterns of the Code......Page 344
The Nonoverlapping Nature of the Code......Page 345
Synthesizing Polypeptides in a Cell-Free System......Page 346
Mixed Copolymers......Page 347
The Triplet-Binding Assay......Page 348
Repeating Copolymers......Page 350
Degeneracy and the Wobble Hypothesis......Page 351
Initiation, Termination, and Suppression......Page 352
13.6. The Genetic Code Is Nearly Universal......Page 353
13.7. Different Initiation Points Create Overlapping Genes......Page 354
13.9. Studies with Bacteria and Phages Provided Evidence for the Existence of mRNA......Page 355
13.10. RNA Polymerase Directs RNA Synthesis......Page 356
Promoters, Template Binding, and the S Subunit......Page 357
13.11. Transcription in Eukaryotes Differs from Prokaryotic Transcription in Several Ways......Page 358
Initiation of Transcription in Eukaryotes......Page 359
Recent Discoveries Concerning RNA Polymerase Function......Page 360
13.12. The Coding Regions of Eukaryotic Genes Are Interrupted by Intervening Sequences Called Introns......Page 361
Splicing Mechanisms: The Spliceosome......Page 363
13.14. Transcription Has Been Visualized by Electron Microscopy......Page 365
Summary Points......Page 366
Fighting Disease with Antisense Therapeutics......Page 367
Problems and Discussion Questions......Page 368
14.1. Translation of mRNA Depends on Ribosomes and Transfer RNAs......Page 372
Ribosomal Structure......Page 373
tRNA Structure......Page 374
Charging tRNA......Page 375
14.2. Translation of mRNA Can Be Divided into Three Steps......Page 376
Elongation......Page 377
Polyribosomes......Page 379
14.3. High-Resolution Studies Have Revealed Many Details about the Functional Prokaryotic Ribosome......Page 380
14.4. Translation Is More Complex in Eukaryotes......Page 381
14.5. The Initial Insight That Proteins Are Important in Heredity Was Provided by the Study of Inborn Errors of Metabolism......Page 382
Analysis of Neurospora Mutants by Beadle and Tatum......Page 383
Genes and Enzymes: Analysis of Biochemical Pathways......Page 385
Sickle-Cell Anemia......Page 386
14.8. The Nucleotide Sequence of a Gene and the Amino Acid Sequence of the Corresponding Protein Exhibit Colinearity......Page 388
14.9. Variation in Protein Structure Provides the Basis of Biological Diversity......Page 389
14.10. Posttranslational Modification Alters the Final Protein Product......Page 392
Protein Folding and Misfolding......Page 393
14.11. Proteins Function in Many Diverse Roles......Page 394
Exon Shuffling......Page 395
Translation Tools and Swiss-Prot for Studying Protein Sequences......Page 396
Case Study: Crippled Ribosomes......Page 397
Problems and Discussion Questions......Page 398
15. Gene Mutation, DNA Repair, and Transposition......Page 402
Classification Based on Type of Molecular Change......Page 403
Classification Based on Phenotypic Effects......Page 404
Spontaneous and Induced Mutations......Page 405
The Fluctuation Test: Are Mutations Random or Adaptive?......Page 406
Tautomeric Shifts......Page 408
Oxidative Damage......Page 409
Alkylating, Intercalating, and Adduct-Forming Agents......Page 410
Ultraviolet Light......Page 411
Ionizing Radiation......Page 412
15.5. Single-Gene Mutations Cause a Wide Range of Human Diseases......Page 413
Mutations Caused by Expandable DNA Repeats......Page 414
Proofreading and Mismatch Repair......Page 415
Base and Nucleotide Excision Repair......Page 416
Nucleotide Excision Repair and Xeroderma Pigmentosum in Humans......Page 418
Double-Strand Break Repair in Eukaryotes......Page 419
15.7. The Ames Test Is Used to Assess the Mutagenicity of Compounds......Page 420
Insertion Sequences and Bacterial Transposons......Page 421
The Ac–Ds System in Maize......Page 422
Transposable Elements in Humans......Page 423
Transposon-Mediated Mutations Reveal Genes Involved in Colorectal Cancer......Page 424
Transposons, Mutations, and Evolution......Page 425
Case Study: Genetic Dwarfism......Page 426
Insights and Solutions......Page 427
Problems and Discussion Questions......Page 428
16. Regulation of Gene Expression in Prokaryotes......Page 431
16.2. Lactose Metabolism in E. coli Is Regulated by an Inducible System......Page 432
Structural Genes......Page 433
Genetic Proof of the Operon Model......Page 434
Isolation of the Repressor......Page 436
16.3. The Catabolite-Activating Protein (CAP) Exerts Positive Control over the lac Operon......Page 437
16.4. Crystal Structure Analysis of Repressor Complexes Has Confirmed the Operon Model......Page 439
Evidence for the trp Operon......Page 441
16.6. Alterations to RNA Secondary Structure Contribute to Prokaryotic Gene Regulation......Page 442
Attenuation......Page 443
Riboswitches......Page 444
16.7. The ara Operon Is Controlled by a Regulator Protein That Exerts Both Positive and Negative Control......Page 445
Summary Points......Page 446
Quorum Sensing: Social Networking in the Bacterial World......Page 447
Problems and Discussion Questions......Page 448
17. Regulation of Gene Expression in Eukaryotes......Page 452
17.1. Eukaryotic Gene Regulation Can Occur at Any of the Steps Leading from DNA to Protein Product......Page 453
Open and Closed Chromatin......Page 454
DNA Methylation......Page 455
Promoter Elements......Page 456
Enhancers and Silencers......Page 457
The Human Metallothionein IIA Gene: Multiple Cis-Acting Elements and Transcription Factors......Page 459
Formation of the RNA Polymerase II Transcription Initiation Complex......Page 460
Mechanisms of Transcription Activation and Repression......Page 461
17.6. Gene Regulation in a Model Organism: Transcription of the GAL Genes of Yeast......Page 462
17.7. Posttranscriptional Gene Regulation Occurs at Many Steps from RNA Processing to Protein Modification......Page 463
Alternative Splicing of mRNA......Page 464
Sex Determination in Drosophila: A Model for Regulation of Alternative Splicing......Page 465
17.8. RNA Silencing Controls Gene Expression in Several Ways......Page 467
The Molecular Mechanisms of RNA-Induced Gene Silencing......Page 468
RNA-Induced Gene Silencing in Biotechnology and Medicine......Page 469
MicrorRNAs Regulate Ovulation in Female Mice......Page 470
The Immune System and Antibody Diversity......Page 471
Gene Rearrangements in the K Light-Chain Gene......Page 472
Enhancer and Promoter Elements......Page 473
Tissue-Specific Gene Expression......Page 474
Summary Points......Page 475
Insights and Solutions......Page 476
Problems and Discussion Questions......Page 477
18.1. Differentiated States Develop from Coordinated Programs of Gene Expression......Page 480
18.2. Evolutionary Conservation of Developmental Mechanisms Can Be Studied Using Model Organisms......Page 481
Overview of Drosophila Development......Page 482
Genetic Analysis of Embryogenesis......Page 483
Segment Polarity Genes......Page 485
Segmentation Genes in Mice and Humans......Page 486
Problems and Discussion Questions......Page 487
Hox Genes and Human Genetic Disorders......Page 489
Homeotic Genes in Arabidopsis......Page 490
Evolutionary Divergence in Homeotic Genes......Page 491
Signaling Pathways in Development......Page 492
Single-Gene Signaling Mechanism Reveals Secrets to Head Regeneration in Planaria......Page 493
Overview of C. elegans Development......Page 494
Genetic Analysis of Vulva Formation......Page 495
The Control of Eye Formation......Page 497
Stem Cell Wars......Page 499
Summary Points......Page 500
Problems and Discussion Questions......Page 501
19. Cancer and Regulation of the Cell Cycle......Page 504
The Clonal Origin of Cancer Cells......Page 505
Cancer as a Multistep Process, Requiring Multiple Mutations......Page 506
19.2. Cancer Cells Contain Genetic Defects Affecting Genomic Stability, DNA Repair, and Chromatin Modifications......Page 507
Genomic Instability and Defective DNA Repair......Page 508
The Cell Cycle and Signal Transduction......Page 509
Cell-Cycle Control and Checkpoints......Page 510
19.4. Proto-Oncogenes and Tumor-Suppressor Genes are Altered in Cancer Cells......Page 511
The p53 Tumor-Suppressor Gene......Page 513
The RB1 Tumor-Suppressor Gene......Page 514
19.5. Cancer Cells Metastasize and Invade Other Tissues......Page 516
19.7. Viruses Contribute to Cancer in Both Humans and Animals......Page 517
19.8. Environmental Agents Contribute to Human Cancers......Page 519
Summary Points......Page 520
Insights and Solutions......Page 521
20. Recombinant DNA Technology......Page 524
Restriction Enzymes Cut DNA at Specific Recognition Sequences......Page 525
DNA Vectors Accept and Replicate DNA Molecules to Be Cloned......Page 526
Bacterial Plasmid Vectors......Page 527
Other Types of Cloning Vectors......Page 529
Host Cells for Cloning Vectors......Page 530
Complementary DNA (cDNA) Libraries......Page 531
Specific Genes Can Be Recovered from a Library by Screening......Page 532
20.3. The Polymerase Chain Reaction Is a Powerful Technique for Copying DNA......Page 533
Limitations of PCR......Page 536
Applications of PCR......Page 537
Restriction Mapping......Page 538
Nucleic Acid Blotting......Page 539
20.5. DNA Sequencing Is the Ultimate Way to Characterize DNA Structure at the Molecular Level......Page 542
Next-Generation and Third-Generation Sequencing Technologies......Page 544
Gene Targeting and Knockout Animal Models......Page 546
Making a Transgenic Animal: The Basics......Page 550
Manipulating Recombinant DNA : Restriction Mapping and Designing PCR Primers......Page 551
Summary Points......Page 552
Problems and Discussion Questions......Page 553
21. Genomics, Bioinformatics, and Proteomics......Page 557
21.1. Whole-Genome Sequencing Is a Widely Used Method for Sequencing and Assembling Entire Genomes......Page 558
High-Throughput Sequencing and Its Impact on Genomics......Page 559
The Clone-By-Clone Approach......Page 560
21.2. DNA Sequence Analysis Relies on Bioinformatics Applications and Genome Databases......Page 562
Annotation to Identify Gene Sequences......Page 563
Hallmark Characteristics of a Gene Sequence Can Be Recognized During Annotation......Page 564
Predicting Gene and Protein Functions by Sequence Analysis......Page 566
Investigators Are Using Genomics Techniques Such as Chromatin Immunoprecipitation to Investigate Aspects of Genome Function and Regulation......Page 567
21.4. The Human Genome Project Revealed Many Important Aspects of Genome Organization in Humans......Page 568
Major Features of the Human Genome......Page 569
Individual Variations in the Human Genome......Page 570
Accessing the Human Genome Project on the Internet......Page 571
Stone-Age Genomics......Page 573
Personal Genome Projects and Personal Genomics......Page 574
Encyclopedia of DNA Elements (ENCODE) Project......Page 576
The Human Microbiome Project......Page 577
No Genome Left Behind and the Genome 10K Plan......Page 578
Prokaryotic and Eukaryotic Genomes Display Common Structural and Functional Features and Important Differences......Page 579
The Sea Urchin Genome......Page 581
The Chimpanzee Genome......Page 582
The Neanderthal Genome and Modern Humans......Page 583
21.7. Comparative Genomics Is Useful for Studying the Evolution and Function of Multigene Families......Page 584
21.8. Metagenomics Applies Genomics Techniques to Environmental Samples......Page 586
Microarray Analysis......Page 588
Reconciling the Number of Genes and the Number of Proteins Expressed by a Cell or Tissue......Page 591
Proteomics Technologies: Two-Dimensional Gel Electrophoresis for Separating Proteins......Page 592
Proteomics Technologies: Mass Spectrometry for Protein Identification......Page 593
Identification of Collagen in Tyrannosaurus rex and Mammut americanum Fossils......Page 596
21.11. Systems Biology Is an Integrated Approach to Studying Interactions of All Components of an Organism’s Cells......Page 597
Contigs, Shotgun Sequencing, and Comparative Genomics......Page 599
Summary Points......Page 600
Problems and Discussion Questions......Page 601
22. Applications and Ethics of Genetic Engineering and Biotechnology......Page 604
Insulin Production in Bacteria......Page 605
Transgenic Animal Hosts and Pharmaceutical Products......Page 606
DNA-Based Vaccines......Page 608
22.2. Genetic Engineering of Plants Has Revolutionized Agriculture......Page 609
Examples of Transgenic Animals......Page 610
How Simple Can a Genome Be?......Page 611
Transplantation of a Synthetic Genome......Page 612
Synthetic Biology for Bioengineering Applications......Page 614
Prenatal Genetic Testing......Page 615
Genetic Tests Based on Restriction Enzyme Analysis......Page 617
Genetic Testing Using Allele-Specific Oligonucleotides......Page 618
Genetic Testing Using DNA Microarrays and Genome Scans......Page 620
Genetic Analysis Using Gene-Expression Microarrays......Page 622
Application of Microarrays for Gene Expression and Genotype Analysis of Pathogens......Page 624
22.6. Genetic Analysis by Individual Genome Sequencing......Page 626
22.7. Genome-Wide Association Studies Identify Genome Variations That Contribute to Disease......Page 627
Pharmacogenomics and Rational Drug Design......Page 628
Genetic Testing and Ethical Dilemmas......Page 630
Direct-To-Consumer Genetic Testing and Regulating the Genetic Test Providers......Page 631
DNA and Gene Patents......Page 632
Patents and Synthetic Biology......Page 633
Privacy and Anonymity in the Era of Genomic Big Data......Page 634
Insights and Solutions......Page 635
Problems and Discussion Questions......Page 636
23. Quantitative Genetics and Multifactorial Traits......Page 639
The Multiple-Gene Hypothesis for Quantitative Inheritance......Page 640
Additive Alleles: The Basis of Continuous Variation......Page 641
Calculating the Number of Polygenes......Page 642
The Mean......Page 643
Covariance and Correlation Coefficient......Page 644
Analysis of a Quantitative Character......Page 645
23.4. Heritability Values Estimate the Genetic Contribution to Phenotypic Variability......Page 646
Narrow-Sense Heritability......Page 647
Artificial Selection......Page 648
23.5. Twin Studies Allow an Estimation of Heritability in Humans......Page 649
Twin Studies Have Several Limitations......Page 650
23.6. Quantitative Trait Loci are Useful in Studying Multifactorial Phenotypes......Page 651
Expression QTLs (eQTLs) and Genetic Disorders......Page 653
The Green Revolution Revisited: Genetic Research with Rice......Page 654
Insights and Solutions......Page 655
Problems and Discussion Questions......Page 656
24. Neurogenetics......Page 660
Organization of Cells in the Central Nervous System......Page 661
Synapses Transfer Information Between Neurons......Page 662
24.2. Identification of Genes Involved in Transmission of Nerve Impulses......Page 663
A Defect in Neurotransmitter Breakdown......Page 665
Fragile-X Syndrome and Synapses......Page 666
Huntington Disease is a Neurodegenerative Behavioral Disorder......Page 667
Mechanism of Huntington Disease......Page 668
Treatment Strategies for Huntington Disease......Page 669
Dissecting the Mechanisms and Neural Pathways in Learning......Page 670
24.5. Behavioral Disorders Have Environmental Components......Page 671
RbAp48 and a Potential Molecular Mechanism for Age-Related Memory Loss......Page 672
Schizophrenia Is a Complex Behavioral Disorder......Page 673
Several Behavioral Disorders Share a Genetic Relationship......Page 674
Epigenetics and Mental Illness......Page 675
Addiction and Alcoholism Are Behaviors with Genetic and Environmental Causes......Page 676
Homologene: Searching for Behavioral Genes......Page 678
Problems and Discussion Questions......Page 679
25. Population and Evolutionary Genetics......Page 682
Variations in Nucleotide Sequence......Page 683
Explaining the High Level of Genetic Variation in Populations......Page 684
25.2. The Hardy–Weinberg Law Describes Allele Frequencies and Genotype Frequencies in Populations......Page 685
25.3. The Hardy–Weinberg Law Can Be Applied to Human Populations......Page 687
Testing for Hardy–Weinberg Equilibrium in a Population......Page 688
Calculating Frequencies for Multiple Alleles in Populations......Page 689
25.4. Natural Selection Is a Major Force Driving Allele Frequency Change......Page 690
Fitness and Selection......Page 691
There are Several Types of Selection......Page 692
25.5. Mutation Creates New Alleles in a Gene Pool......Page 693
25.6. Migration and Gene Flow Can Alter Allele Frequencies......Page 694
Founder Effects in Human Populations......Page 695
25.8. Nonrandom Mating Changes Genotype Frequency but Not Allele Frequency......Page 696
25.9. Reduced Gene Flow, Selection, and Genetic Drift Can Lead to Speciation......Page 697
Title Page......Page 2
Copyright Page......Page 3
Dedication......Page 4
About the Authors......Page 5
Brief Contents......Page 6
Explore Cutting Edge Topics......Page 7
Explore Classic and Modern Approaches......Page 8
Learn and Practice Problem Solving......Page 9
Succeed with MasteringGenetics......Page 11
Contents......Page 12
Preface......Page 29
1. Introduction to Genetics......Page 36
1600–1850: The Dawn of Modern Biology......Page 37
Mendel’s Work on Transmission of Traits......Page 38
Genetic Variation......Page 39
1.3. Discovery of the Double Helix Launched the Era of Molecular Genetics......Page 40
Gene Expression: From DNA to Phenotype......Page 41
Linking Genotype to Phenotype: Sickle-Cell Anemia......Page 42
Plants, Animals, and the Food Supply......Page 43
1.6. Genomics, Proteomics, and Bioinformatics are New and Expanding Fields......Page 44
1.7. Genetic Studies Rely on the Use of Model Organisms......Page 45
Model Organisms and Human Diseases......Page 46
Genetics and Society......Page 47
Internet Resources for Learning About Genomics, Bioinformatics, and Proteomics......Page 48
Summary Points......Page 49
Problems and Discussion Questions......Page 50
2. Mitosis and Meiosis......Page 51
2.1. Cell Structure Is Closely Tied to Genetic Function......Page 52
2.2. Chromosomes Exist in Homologous Pairs in Diploid Organisms......Page 54
Interphase and the Cell Cycle......Page 56
Prophase......Page 57
Anaphase......Page 59
Cell-Cycle Regulation and Checkpoints......Page 60
An Overview of Meiosis......Page 61
The First Meiotic Division: Prophase I......Page 63
The Second Meiotic Division......Page 64
2.5. The Development of Gametes Varies in Spermatogenesis Compared to Oogenesis......Page 66
2.7. Electron Microscopy Has Revealed the Physical Structure of Mitotic and Meiotic Chromosomes......Page 68
Summary Points......Page 70
Insights and Solutions......Page 71
Problems and Discussion Questions......Page 72
3. Mendelian Genetics......Page 75
3.1. Mendel Used a Model Experimental Approach to Study Patterns of Inheritance......Page 76
Mendel’s First Three Postulates......Page 77
Mendel’s Analytical Approach......Page 78
Punnett Squares......Page 79
The Testcross: One Character......Page 80
Mendel’s Fourth Postulate: Independent Assortment......Page 81
The Testcross: Two Characters......Page 82
3.4. The Trihybrid Cross Demonstrates That Mendel’s Principles Apply to Inheritance of Multiple Traits......Page 84
The Forked-Line Method, or Branch Diagram......Page 85
3.5. Mendel’s Work was Rediscovered in the Early Twentieth Century......Page 86
Unit Factors, Genes, and Homologous Chromosomes......Page 87
3.7. Laws of Probability Help to Explain Genetic Events......Page 89
The Binomial Theorem......Page 90
Chi-Square Calculations and the Null Hypothesis......Page 91
Interpreting Probability Values......Page 92
Pedigree Conventions......Page 94
Pedigree Analysis......Page 95
How Mendel’s Peas Become Wrinkled: A Molecular Explanation......Page 96
Online Mendelian Inheritance in Man......Page 97
Summary Points......Page 98
Insights and Solutions......Page 99
Problems and Discussion Questions......Page 101
4. Extensions of Mendelian Genetics......Page 105
4.1. Alleles Alter Phenotypes in Different Ways......Page 106
4.3. Neither Allele is Dominant in Incomplete, or Partial, Dominance......Page 107
4.4. In Codominance, the Influence of Both Alleles in a Heterozygote Is Clearly Evident......Page 108
The A and B Antigens......Page 109
The Bombay Phenotype......Page 110
4.6. Lethal Alleles Represent Essential Genes......Page 111
The Molecular Basis of Dominance, Recessiveness, and Lethality: The Agouti Gene......Page 112
4.7. Combinations of Two Gene Pairs with Two Modes of Inheritance Modify the 9:3:3:1 Ratio......Page 113
4.8. Phenotypes are Often Affected by More Than One Gene......Page 114
Epistasis......Page 115
Novel Phenotypes......Page 118
4.9. Complementation Analysis Can Determine if Two Mutations Causing a Similar Phenotype are Alleles of the Same Gene......Page 120
4.10. Expression of a Single Gene May Have Multiple Effects......Page 121
X-Linkage in Drosophila......Page 122
X-Linkage in Humans......Page 123
4.12. In Sex-Limited and Sex-Influenced Inheritance, an Individual’s Sex Influences the Phenotype......Page 124
4.13. Genetic Background and the Environment May Alter Phenotypic Expression......Page 125
Temperature Effects—An Introduction to Conditional Mutations......Page 126
Nutritional Effects......Page 127
Genomic (Parental) Imprinting and Gene Silencing......Page 128
Improving the Genetic Fate of Purebred Dogs......Page 129
Case Study: But he isn’t Deaf......Page 130
Insights and Solutions......Page 131
Problems and Discussion Questions......Page 133
5. Chromosome Mapping in Eukaryotes......Page 139
5.1. Genes Linked on the Same Chromosome Segregate Together......Page 140
The Linkage Ratio......Page 141
Sturtevant and Mapping......Page 143
Single Crossovers......Page 145
Multiple Exchanges......Page 146
Three-Point Mapping in Drosophila......Page 147
Determining the Gene Sequence......Page 149
A Mapping Problem in Maize......Page 151
Interference and the Coefficient of Coincidence......Page 154
5.5. Drosophila Genes Have Been Extensively Mapped......Page 155
5.6. Lod Score Analysis and Somatic Cell Hybridization Were Historically Important in Creating Human Chromosome Maps......Page 156
5.7. Chromosome Mapping is Now Possible Using DNA Markers and Annotated Computer Databases......Page 158
5.8. Crossing Over Involves a Physical Exchange Between Chromatids......Page 159
5.9. Exchanges Also Occur between Sister Chromatids during Mitosis......Page 160
5.10. Did Mendel Encounter Linkage?......Page 161
Case Study: Links to Autism......Page 162
Insights and Solutions......Page 163
Problems and Discussion Questions......Page 165
6. Genetic Analysis and Mapping in Bacteria and Bacteriophages......Page 169
6.1. Bacteria Mutate Spontaneously and Grow at an Exponential Rate......Page 170
Conjugation in Bacteria: The Discovery of F+ and F- Strains......Page 171
Hfr Bacteria and Chromosome Mapping......Page 173
The F' State and Merozygotes......Page 176
6.3. Rec Proteins are Essential to Bacterial Recombination......Page 178
6.4. The F Factor Is an Example of a Plasmid......Page 179
The Transformation Process......Page 180
6.6. Bacteriophages are Bacterial Viruses......Page 181
The Plaque Assay......Page 182
The Lederberg–Zinder Experiment......Page 184
The Nature of Transduction......Page 185
Bacteriophage Mutations......Page 186
Mapping in Bacteriophages......Page 187
The rll Locus of Phage T4......Page 188
Recombinational Analysis......Page 189
Deletion Testing of the rll Locus......Page 190
The rll Gene Map......Page 191
From Cholera Genes to Edible Vaccines......Page 193
Insights and Solutions......Page 194
Problems and Discussion Questions......Page 196
7. Sex Determination and Sex Chromosomes......Page 199
Zea Mays......Page 200
Caenorhabditis Elegans......Page 202
7.2. X and Y Chromosomes Were First Linked to Sex Determination Early in the Twentieth Century......Page 203
7.3. The Y Chromosome Determines Maleness in Humans......Page 204
Klinefelter and Turner Syndromes......Page 205
47,XYY Condition......Page 206
The Y Chromosome and Male Development......Page 207
7.4. The Ratio of Males to Females in Humans Is Not 1.0......Page 209
Barr Bodies......Page 210
The Lyon Hypothesis......Page 211
The Mechanism of Inactivation......Page 212
7.6. The Ratio of X Chromosomes to Sets of Autosomes Determines Sex in Drosophila......Page 214
Dosage Compensation in Drosophila......Page 215
7.7. Temperature Variation Controls Sex Determination in Reptiles......Page 217
Drosophila Sxl Gene Induces Female Development......Page 216
A Question of Gender: Sex Selection in Humans......Page 219
Insights and Solutions......Page 220
Problems and Discussion Questions......Page 221
8. Chromosome Mutations: Variation in Number and Arrangement......Page 223
Monosomy......Page 224
Trisomy......Page 225
Down Syndrome: Trisomy 21......Page 226
Mouse Models of Down Syndrome......Page 227
The Origin of the Extra 21st Chromosome in Down Syndrome......Page 228
8.3. Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, Is Prevalent in Plants......Page 230
Autopolyploidy......Page 231
Allopolyploidy......Page 232
Endopolyploidy......Page 233
8.4. Variation Occurs in the Composition and Arrangement of Chromosomes......Page 234
Cri du Chat Syndrome in Humans......Page 235
Gene Redundancy and Amplification—Ribosomal RNA Genes......Page 236
The Role of Gene Duplication in Evolution......Page 237
8.7. Inversions Rearrange the Linear Gene Sequence......Page 238
Consequences of Inversions during Gamete Formation......Page 239
8.8. Translocations Alter the Location of Chromosomal Segments in the Genome......Page 240
Translocations in Humans: Familial Down Syndrome......Page 241
Fragile-X Syndrome......Page 242
The Link Between Fragile Sites and Cancer......Page 243
Down Syndrome and Prenatal Testing—The New Eugenics?......Page 244
Insights and Solutions......Page 245
Problems and Discussion Questions......Page 246
9. Extranuclear Inheritance......Page 249
Chloroplast Mutations in Chlamydomonas......Page 250
Mitochondrial Mutations: Early Studies in Neurospora and Yeast......Page 251
Organelle DNA and the Endosymbiotic Theory......Page 253
Molecular Organization and Gene Products of Chloroplast DNA......Page 254
Molecular Organization and Gene Products of Mitochondrial DNA......Page 255
9.3. Mutations in Mitochondrial DNA Cause Human Disorders......Page 256
Mitochondria, Human Health, and Aging......Page 257
Future Prevention of the Transmission of mtDNA-Based Disorders......Page 258
Lymnaea Coiling......Page 259
Embryonic Development in Drosophila......Page 260
Mitochondrial DNA and the Mystery of the Romanovs......Page 261
Case Study: A Twin Difference......Page 262
Problems and Discussion Questions......Page 263
10. DNA Structure and Analysis......Page 266
10.2. Until 1944, Observations Favored Protein as the Genetic Material......Page 267
Transformation: Early Studies......Page 268
Transformation: The Avery, MacLeod, and McCarty Experiment......Page 269
The Hershey–Chase Experiment......Page 271
Transfection Experiments......Page 272
Direct Evidence: Recombinant DNA Studies......Page 274
Nucleotides: Building Blocks of Nucleic Acids......Page 275
Polynucleotides......Page 277
10.7. The Structure of DNA Holds the Key to Understanding Its Function......Page 278
Base-Composition Studies......Page 279
The Watson–Crick Model......Page 280
10.8. Alternative Forms of DNA Exist......Page 284
10.9. The Structure of RNA is Chemically Similar to DNA , but Single Stranded......Page 285
Denaturation and Renaturation of Nucleic Acids......Page 286
Fluorescent in situ Hybridization (FISH)......Page 287
Reassociation Kinetics and Repetitive DNA......Page 288
Electrophoresis of Nucleic Acids......Page 289
Introduction to Bioinformatics: BLAST......Page 290
Summary Points......Page 291
Insights and Solutions......Page 292
Problems and Discussion Questions......Page 293
11. DNA Replication and Recombination......Page 296
11.1. DNA Is Reproduced by Semiconservative Replication......Page 297
The Meselson–Stahl Experiment......Page 298
Semiconservative Replication in Eukaryotes......Page 299
Origins, Forks, and Units of Replication......Page 300
DNA Polymerase I......Page 301
DNA Polymerase II, III, IV, and V......Page 302
The DNA Pol III Holoenzyme......Page 303
Unwinding the DNA Helix......Page 304
Continuous and Discontinuous DNA Synthesis......Page 305
Concurrent Synthesis Occurs on the Leading and Lagging Strands......Page 306
11.4. A Coherent Model Summarizes DNA Replication......Page 307
Lethal Knockouts of DNA Ligase Genes......Page 308
Initiation at Multiple Replication Origins......Page 310
Replication through Chromatin......Page 311
Replication at the Telomere......Page 312
Models of Homologous Recombination......Page 314
Gene Conversion, a Consequence of Homologous Recombination......Page 316
Telomeres: The Key to Immortality?......Page 318
Insights and Solutions......Page 319
Problems and Discussion Questions......Page 320
12. DNA Organization in Chromosomes......Page 323
12.1. Viral and Bacterial Chromosomes Are Relatively Simple DNA Molecules......Page 324
12.2. Supercoiling Facilitates Compaction of the DNA of Viral and Bacterial Chromosomes......Page 325
Polytene Chromosomes......Page 327
Lampbrush Chromosomes......Page 328
Chromatin Structure and Nucleosomes......Page 329
Chromatin Remodeling......Page 331
12.5. Chromosome Banding Differentiates Regions along the Mitotic Chromosome......Page 333
12.6. Eukaryotic Genomes Demonstrate Complex Sequence Organization Characterized by Repetitive DNA......Page 334
Satellite DNA......Page 335
Middle Repetitive Sequences: VNTRs and STRs......Page 336
12.7. The Vast Majority of a Eukaryotic Genome Does Not Encode Functional Genes......Page 337
Database of Genomic Variants: Structural Variations in the Human Genome......Page 338
Insights and Solutions......Page 339
Problems and Discussion Questions......Page 340
13. The Genetic Code and Transcription......Page 343
13.2. Early Studies Established the Basic Operational Patterns of the Code......Page 344
The Nonoverlapping Nature of the Code......Page 345
Synthesizing Polypeptides in a Cell-Free System......Page 346
Mixed Copolymers......Page 347
The Triplet-Binding Assay......Page 348
Repeating Copolymers......Page 350
Degeneracy and the Wobble Hypothesis......Page 351
Initiation, Termination, and Suppression......Page 352
13.6. The Genetic Code Is Nearly Universal......Page 353
13.7. Different Initiation Points Create Overlapping Genes......Page 354
13.9. Studies with Bacteria and Phages Provided Evidence for the Existence of mRNA......Page 355
13.10. RNA Polymerase Directs RNA Synthesis......Page 356
Promoters, Template Binding, and the S Subunit......Page 357
13.11. Transcription in Eukaryotes Differs from Prokaryotic Transcription in Several Ways......Page 358
Initiation of Transcription in Eukaryotes......Page 359
Recent Discoveries Concerning RNA Polymerase Function......Page 360
13.12. The Coding Regions of Eukaryotic Genes Are Interrupted by Intervening Sequences Called Introns......Page 361
Splicing Mechanisms: The Spliceosome......Page 363
13.14. Transcription Has Been Visualized by Electron Microscopy......Page 365
Summary Points......Page 366
Fighting Disease with Antisense Therapeutics......Page 367
Problems and Discussion Questions......Page 368
14.1. Translation of mRNA Depends on Ribosomes and Transfer RNAs......Page 372
Ribosomal Structure......Page 373
tRNA Structure......Page 374
Charging tRNA......Page 375
14.2. Translation of mRNA Can Be Divided into Three Steps......Page 376
Elongation......Page 377
Polyribosomes......Page 379
14.3. High-Resolution Studies Have Revealed Many Details about the Functional Prokaryotic Ribosome......Page 380
14.4. Translation Is More Complex in Eukaryotes......Page 381
14.5. The Initial Insight That Proteins Are Important in Heredity Was Provided by the Study of Inborn Errors of Metabolism......Page 382
Analysis of Neurospora Mutants by Beadle and Tatum......Page 383
Genes and Enzymes: Analysis of Biochemical Pathways......Page 385
Sickle-Cell Anemia......Page 386
14.8. The Nucleotide Sequence of a Gene and the Amino Acid Sequence of the Corresponding Protein Exhibit Colinearity......Page 388
14.9. Variation in Protein Structure Provides the Basis of Biological Diversity......Page 389
14.10. Posttranslational Modification Alters the Final Protein Product......Page 392
Protein Folding and Misfolding......Page 393
14.11. Proteins Function in Many Diverse Roles......Page 394
Exon Shuffling......Page 395
Translation Tools and Swiss-Prot for Studying Protein Sequences......Page 396
Case Study: Crippled Ribosomes......Page 397
Problems and Discussion Questions......Page 398
15. Gene Mutation, DNA Repair, and Transposition......Page 402
Classification Based on Type of Molecular Change......Page 403
Classification Based on Phenotypic Effects......Page 404
Spontaneous and Induced Mutations......Page 405
The Fluctuation Test: Are Mutations Random or Adaptive?......Page 406
Tautomeric Shifts......Page 408
Oxidative Damage......Page 409
Alkylating, Intercalating, and Adduct-Forming Agents......Page 410
Ultraviolet Light......Page 411
Ionizing Radiation......Page 412
15.5. Single-Gene Mutations Cause a Wide Range of Human Diseases......Page 413
Mutations Caused by Expandable DNA Repeats......Page 414
Proofreading and Mismatch Repair......Page 415
Base and Nucleotide Excision Repair......Page 416
Nucleotide Excision Repair and Xeroderma Pigmentosum in Humans......Page 418
Double-Strand Break Repair in Eukaryotes......Page 419
15.7. The Ames Test Is Used to Assess the Mutagenicity of Compounds......Page 420
Insertion Sequences and Bacterial Transposons......Page 421
The Ac–Ds System in Maize......Page 422
Transposable Elements in Humans......Page 423
Transposon-Mediated Mutations Reveal Genes Involved in Colorectal Cancer......Page 424
Transposons, Mutations, and Evolution......Page 425
Case Study: Genetic Dwarfism......Page 426
Insights and Solutions......Page 427
Problems and Discussion Questions......Page 428
16. Regulation of Gene Expression in Prokaryotes......Page 431
16.2. Lactose Metabolism in E. coli Is Regulated by an Inducible System......Page 432
Structural Genes......Page 433
Genetic Proof of the Operon Model......Page 434
Isolation of the Repressor......Page 436
16.3. The Catabolite-Activating Protein (CAP) Exerts Positive Control over the lac Operon......Page 437
16.4. Crystal Structure Analysis of Repressor Complexes Has Confirmed the Operon Model......Page 439
Evidence for the trp Operon......Page 441
16.6. Alterations to RNA Secondary Structure Contribute to Prokaryotic Gene Regulation......Page 442
Attenuation......Page 443
Riboswitches......Page 444
16.7. The ara Operon Is Controlled by a Regulator Protein That Exerts Both Positive and Negative Control......Page 445
Summary Points......Page 446
Quorum Sensing: Social Networking in the Bacterial World......Page 447
Problems and Discussion Questions......Page 448
17. Regulation of Gene Expression in Eukaryotes......Page 452
17.1. Eukaryotic Gene Regulation Can Occur at Any of the Steps Leading from DNA to Protein Product......Page 453
Open and Closed Chromatin......Page 454
DNA Methylation......Page 455
Promoter Elements......Page 456
Enhancers and Silencers......Page 457
The Human Metallothionein IIA Gene: Multiple Cis-Acting Elements and Transcription Factors......Page 459
Formation of the RNA Polymerase II Transcription Initiation Complex......Page 460
Mechanisms of Transcription Activation and Repression......Page 461
17.6. Gene Regulation in a Model Organism: Transcription of the GAL Genes of Yeast......Page 462
17.7. Posttranscriptional Gene Regulation Occurs at Many Steps from RNA Processing to Protein Modification......Page 463
Alternative Splicing of mRNA......Page 464
Sex Determination in Drosophila: A Model for Regulation of Alternative Splicing......Page 465
17.8. RNA Silencing Controls Gene Expression in Several Ways......Page 467
The Molecular Mechanisms of RNA-Induced Gene Silencing......Page 468
RNA-Induced Gene Silencing in Biotechnology and Medicine......Page 469
MicrorRNAs Regulate Ovulation in Female Mice......Page 470
The Immune System and Antibody Diversity......Page 471
Gene Rearrangements in the K Light-Chain Gene......Page 472
Enhancer and Promoter Elements......Page 473
Tissue-Specific Gene Expression......Page 474
Summary Points......Page 475
Insights and Solutions......Page 476
Problems and Discussion Questions......Page 477
18.1. Differentiated States Develop from Coordinated Programs of Gene Expression......Page 480
18.2. Evolutionary Conservation of Developmental Mechanisms Can Be Studied Using Model Organisms......Page 481
Overview of Drosophila Development......Page 482
Genetic Analysis of Embryogenesis......Page 483
Segment Polarity Genes......Page 485
Segmentation Genes in Mice and Humans......Page 486
Problems and Discussion Questions......Page 487
Hox Genes and Human Genetic Disorders......Page 489
Homeotic Genes in Arabidopsis......Page 490
Evolutionary Divergence in Homeotic Genes......Page 491
Signaling Pathways in Development......Page 492
Single-Gene Signaling Mechanism Reveals Secrets to Head Regeneration in Planaria......Page 493
Overview of C. elegans Development......Page 494
Genetic Analysis of Vulva Formation......Page 495
The Control of Eye Formation......Page 497
Stem Cell Wars......Page 499
Summary Points......Page 500
Problems and Discussion Questions......Page 501
19. Cancer and Regulation of the Cell Cycle......Page 504
The Clonal Origin of Cancer Cells......Page 505
Cancer as a Multistep Process, Requiring Multiple Mutations......Page 506
19.2. Cancer Cells Contain Genetic Defects Affecting Genomic Stability, DNA Repair, and Chromatin Modifications......Page 507
Genomic Instability and Defective DNA Repair......Page 508
The Cell Cycle and Signal Transduction......Page 509
Cell-Cycle Control and Checkpoints......Page 510
19.4. Proto-Oncogenes and Tumor-Suppressor Genes are Altered in Cancer Cells......Page 511
The p53 Tumor-Suppressor Gene......Page 513
The RB1 Tumor-Suppressor Gene......Page 514
19.5. Cancer Cells Metastasize and Invade Other Tissues......Page 516
19.7. Viruses Contribute to Cancer in Both Humans and Animals......Page 517
19.8. Environmental Agents Contribute to Human Cancers......Page 519
Summary Points......Page 520
Insights and Solutions......Page 521
20. Recombinant DNA Technology......Page 524
Restriction Enzymes Cut DNA at Specific Recognition Sequences......Page 525
DNA Vectors Accept and Replicate DNA Molecules to Be Cloned......Page 526
Bacterial Plasmid Vectors......Page 527
Other Types of Cloning Vectors......Page 529
Host Cells for Cloning Vectors......Page 530
Complementary DNA (cDNA) Libraries......Page 531
Specific Genes Can Be Recovered from a Library by Screening......Page 532
20.3. The Polymerase Chain Reaction Is a Powerful Technique for Copying DNA......Page 533
Limitations of PCR......Page 536
Applications of PCR......Page 537
Restriction Mapping......Page 538
Nucleic Acid Blotting......Page 539
20.5. DNA Sequencing Is the Ultimate Way to Characterize DNA Structure at the Molecular Level......Page 542
Next-Generation and Third-Generation Sequencing Technologies......Page 544
Gene Targeting and Knockout Animal Models......Page 546
Making a Transgenic Animal: The Basics......Page 550
Manipulating Recombinant DNA : Restriction Mapping and Designing PCR Primers......Page 551
Summary Points......Page 552
Problems and Discussion Questions......Page 553
21. Genomics, Bioinformatics, and Proteomics......Page 557
21.1. Whole-Genome Sequencing Is a Widely Used Method for Sequencing and Assembling Entire Genomes......Page 558
High-Throughput Sequencing and Its Impact on Genomics......Page 559
The Clone-By-Clone Approach......Page 560
21.2. DNA Sequence Analysis Relies on Bioinformatics Applications and Genome Databases......Page 562
Annotation to Identify Gene Sequences......Page 563
Hallmark Characteristics of a Gene Sequence Can Be Recognized During Annotation......Page 564
Predicting Gene and Protein Functions by Sequence Analysis......Page 566
Investigators Are Using Genomics Techniques Such as Chromatin Immunoprecipitation to Investigate Aspects of Genome Function and Regulation......Page 567
21.4. The Human Genome Project Revealed Many Important Aspects of Genome Organization in Humans......Page 568
Major Features of the Human Genome......Page 569
Individual Variations in the Human Genome......Page 570
Accessing the Human Genome Project on the Internet......Page 571
Stone-Age Genomics......Page 573
Personal Genome Projects and Personal Genomics......Page 574
Encyclopedia of DNA Elements (ENCODE) Project......Page 576
The Human Microbiome Project......Page 577
No Genome Left Behind and the Genome 10K Plan......Page 578
Prokaryotic and Eukaryotic Genomes Display Common Structural and Functional Features and Important Differences......Page 579
The Sea Urchin Genome......Page 581
The Chimpanzee Genome......Page 582
The Neanderthal Genome and Modern Humans......Page 583
21.7. Comparative Genomics Is Useful for Studying the Evolution and Function of Multigene Families......Page 584
21.8. Metagenomics Applies Genomics Techniques to Environmental Samples......Page 586
Microarray Analysis......Page 588
Reconciling the Number of Genes and the Number of Proteins Expressed by a Cell or Tissue......Page 591
Proteomics Technologies: Two-Dimensional Gel Electrophoresis for Separating Proteins......Page 592
Proteomics Technologies: Mass Spectrometry for Protein Identification......Page 593
Identification of Collagen in Tyrannosaurus rex and Mammut americanum Fossils......Page 596
21.11. Systems Biology Is an Integrated Approach to Studying Interactions of All Components of an Organism’s Cells......Page 597
Contigs, Shotgun Sequencing, and Comparative Genomics......Page 599
Summary Points......Page 600
Problems and Discussion Questions......Page 601
22. Applications and Ethics of Genetic Engineering and Biotechnology......Page 604
Insulin Production in Bacteria......Page 605
Transgenic Animal Hosts and Pharmaceutical Products......Page 606
DNA-Based Vaccines......Page 608
22.2. Genetic Engineering of Plants Has Revolutionized Agriculture......Page 609
Examples of Transgenic Animals......Page 610
How Simple Can a Genome Be?......Page 611
Transplantation of a Synthetic Genome......Page 612
Synthetic Biology for Bioengineering Applications......Page 614
Prenatal Genetic Testing......Page 615
Genetic Tests Based on Restriction Enzyme Analysis......Page 617
Genetic Testing Using Allele-Specific Oligonucleotides......Page 618
Genetic Testing Using DNA Microarrays and Genome Scans......Page 620
Genetic Analysis Using Gene-Expression Microarrays......Page 622
Application of Microarrays for Gene Expression and Genotype Analysis of Pathogens......Page 624
22.6. Genetic Analysis by Individual Genome Sequencing......Page 626
22.7. Genome-Wide Association Studies Identify Genome Variations That Contribute to Disease......Page 627
Pharmacogenomics and Rational Drug Design......Page 628
Genetic Testing and Ethical Dilemmas......Page 630
Direct-To-Consumer Genetic Testing and Regulating the Genetic Test Providers......Page 631
DNA and Gene Patents......Page 632
Patents and Synthetic Biology......Page 633
Privacy and Anonymity in the Era of Genomic Big Data......Page 634
Insights and Solutions......Page 635
Problems and Discussion Questions......Page 636
23. Quantitative Genetics and Multifactorial Traits......Page 639
The Multiple-Gene Hypothesis for Quantitative Inheritance......Page 640
Additive Alleles: The Basis of Continuous Variation......Page 641
Calculating the Number of Polygenes......Page 642
The Mean......Page 643
Covariance and Correlation Coefficient......Page 644
Analysis of a Quantitative Character......Page 645
23.4. Heritability Values Estimate the Genetic Contribution to Phenotypic Variability......Page 646
Narrow-Sense Heritability......Page 647
Artificial Selection......Page 648
23.5. Twin Studies Allow an Estimation of Heritability in Humans......Page 649
Twin Studies Have Several Limitations......Page 650
23.6. Quantitative Trait Loci are Useful in Studying Multifactorial Phenotypes......Page 651
Expression QTLs (eQTLs) and Genetic Disorders......Page 653
The Green Revolution Revisited: Genetic Research with Rice......Page 654
Insights and Solutions......Page 655
Problems and Discussion Questions......Page 656
24. Neurogenetics......Page 660
Organization of Cells in the Central Nervous System......Page 661
Synapses Transfer Information Between Neurons......Page 662
24.2. Identification of Genes Involved in Transmission of Nerve Impulses......Page 663
A Defect in Neurotransmitter Breakdown......Page 665
Fragile-X Syndrome and Synapses......Page 666
Huntington Disease is a Neurodegenerative Behavioral Disorder......Page 667
Mechanism of Huntington Disease......Page 668
Treatment Strategies for Huntington Disease......Page 669
Dissecting the Mechanisms and Neural Pathways in Learning......Page 670
24.5. Behavioral Disorders Have Environmental Components......Page 671
RbAp48 and a Potential Molecular Mechanism for Age-Related Memory Loss......Page 672
Schizophrenia Is a Complex Behavioral Disorder......Page 673
Several Behavioral Disorders Share a Genetic Relationship......Page 674
Epigenetics and Mental Illness......Page 675
Addiction and Alcoholism Are Behaviors with Genetic and Environmental Causes......Page 676
Homologene: Searching for Behavioral Genes......Page 678
Problems and Discussion Questions......Page 679
25. Population and Evolutionary Genetics......Page 682
Variations in Nucleotide Sequence......Page 683
Explaining the High Level of Genetic Variation in Populations......Page 684
25.2. The Hardy–Weinberg Law Describes Allele Frequencies and Genotype Frequencies in Populations......Page 685
25.3. The Hardy–Weinberg Law Can Be Applied to Human Populations......Page 687
Testing for Hardy–Weinberg Equilibrium in a Population......Page 688
Calculating Frequencies for Multiple Alleles in Populations......Page 689
25.4. Natural Selection Is a Major Force Driving Allele Frequency Change......Page 690
Fitness and Selection......Page 691
There are Several Types of Selection......Page 692
25.5. Mutation Creates New Alleles in a Gene Pool......Page 693
25.6. Migration and Gene Flow Can Alter Allele Frequencies......Page 694
Founder Effects in Human Populations......Page 695
25.8. Nonrandom Mating Changes Genotype Frequency but Not Allele Frequency......Page 696
25.9. Reduced Gene Flow, Selection, and Genetic Drift Can Lead to Speciation......Page 697
Alternative description
It is essential that textbook authors step back and look with fresh eyes as each edition of their work is planned. In doing so, two main questions must be posed: (1) How has the body of information in their field-in this case Genetics-grown and shifted since the last edition; and (2) What pedagogic innovations might be devised and incorporated into the text that will unquestionably enhance students' learning? The preparation of the 11th edition of Concepts of Genetics, a text now entering its fourth decade of providing support for students studying in this field has occasioned still another fresh look. And what we focused on in this new edition, in addition to the normal updating that is inevitably required, were two things: (1) the need to increase the opportunities for instructors and students to engage in active and cooperative learning approaches, either within or outside of the classroom; and (2) the need to provide more comprehensive coverage of important, emerging topics that do not yet warrant their own traditional chapters
Alternative description
**__Concepts of Genetics,__Eleventh Edition****Note**
date open sourced
2020-11-29
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
- Option #1: Fast Partner Server #1 (recommended) (open in viewer) (no redirect) (short filename) (no browser verification or waitlists)
- Option #2: Fast Partner Server #2 (open in viewer) (no redirect) (short filename)
- Option #3: Fast Partner Server #3 (open in viewer) (no redirect) (short filename)
- Option #4: Fast Partner Server #4 (open in viewer) (no redirect) (short filename)
- Option #5: Fast Partner Server #5 (open in viewer) (no redirect) (short filename)
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Option #1: Slow Partner Server #1 (slightly faster but with waitlist)
- Option #2: Slow Partner Server #2 (slightly faster but with waitlist)
- Option #3: Slow Partner Server #3 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
External downloads
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.