English [en], .pdf, 🚀/lgli/lgrs/nexusstc/zlib, 34.5MB, 📘 Book (non-fiction), nexusstc/Proof and the Art of Mathematics/cf78a1ebdfef5db6ad112ce9fca95c8f.pdf
Proof and the Art of Mathematics 🔍
The MIT Press, MIT Press, Cambridge, 2020
Joel David Hamkins 🔍
description
This is a mathematical coming-of-age book, for students on the cusp, who are maturing into mathematicians, aspiring to communicate mathematical truths to other mathematicians in the currency of mathematics, which is: proof. This is a book for students who are learning—perhaps for the first time in a serious way—how to write a mathematical proof. I hope to show how a mathematician makes an argument establishing a mathematical truth.
Proofs tell us not only that a mathematical statement is true, but also why it is true, and they communicate this truth. The best proofs give us insight into the nature of mathematical reality. They lead us to those sublime yet elusive Aha! moments, a joyous experience for any mathematician, occurring when a previously opaque, confounding issue becomes transparent and our mathematical gaze suddenly penetrates completely through it, grasping it all in one take. So let us learn together how to write proofs well, producing clear and correct mathematical arguments that logically establish their conclusions, with whatever insight and elegance we can muster. We shall do so in the context of the diverse mathematical topics that I have gathered together here in this book for the purpose.
Proofs tell us not only that a mathematical statement is true, but also why it is true, and they communicate this truth. The best proofs give us insight into the nature of mathematical reality. They lead us to those sublime yet elusive Aha! moments, a joyous experience for any mathematician, occurring when a previously opaque, confounding issue becomes transparent and our mathematical gaze suddenly penetrates completely through it, grasping it all in one take. So let us learn together how to write proofs well, producing clear and correct mathematical arguments that logically establish their conclusions, with whatever insight and elegance we can muster. We shall do so in the context of the diverse mathematical topics that I have gathered together here in this book for the purpose.
Alternative filename
lgrsnf/Hamkins J. Proof and the Art of Mathematics 2020.pdf
Alternative filename
lgli/Hamkins J. Proof and the Art of Mathematics 2020.pdf
Alternative author
Hamkins, Joel David
Alternative publisher
AAAI Press
Alternative edition
United States, United States of America
Alternative edition
Cambridge, Massachusetts, 2020
metadata comments
{"isbns":["0262539799","9780262539791"],"last_page":232,"publisher":"MIT Press"}
Alternative description
An introduction to writing proofs, presented through compelling mathematical statements with interesting elementary proofs.This book offers an introduction to the art and craft of proof writing. The author, a leading research mathematician, presents a series of engaging and compelling mathematical statements with interesting elementary proofs. These proofs capture a wide range of topics, including number theory, combinatorics, graph theory, the theory of games, geometry, infinity, order theory, and real analysis. The goal is to show students and aspiring mathematicians how to write proofs with elegance and precision. The book is organized around mathematically rich topics (rather than methods of proof), allowing students to learn to write proofs with material that is itself intrinsically interesting. Students will find the early chapters the easiest. Chapter 4 explains the method of mathematical induction, which is used in many arguments throughout the book. Later chapters offer chapter-length developments of major theorems, and the final chapters are more abstract. The book is generously illustrated; an extended chapter on proofs-without-words shows the power of figures and diagrams to communicate mathematical ideas—but also acknowledges the dangers of such an approach. Each chapter includes exercises, and sample answers are provided at the end of the book.
Alternative description
"This book offers an introduction to the art and craft of proof writing. The author, a leading research mathematician, presents a series of engaging and compelling mathematical statements with interesting elementary proofs. These proofs capture a wide range of topics, including number theory, combinatorics, graph theory, the theory of games, geometry, infinity, order theory, and real analysis. The goal is to show students and aspiring mathematicians how to write proofs with elegance and precision.The book is organized around mathematically rich topics (rather than methods of proof), allowing students to learn to write proofs with material that is itself intrinsically interesting. Students will find the early chapters the easiest. Chapter 4 explains the method of mathematical induction, which is used in many arguments throughout the book. Later chapters offer chapter-length developments of major theorems, and the final chapters are more abstract. The book is generously illustrated; an extended chapter on proofs-without-words shows the power of figures and diagrams to communicate mathematical ideas—but also acknowledges the dangers of such an approach. Each chapter includes exercises, and sample answers are provided at the end of the book."-- Résumé de l'éditeur
Alternative description
An introduction to writing proofs, presented through compelling mathematical statements with interesting elementary proofs.
This book offers an introduction to the art and craft of proof-writing. The author, a leading research mathematician, presents a series of engaging and compelling mathematical statements with interesting elementary proofs. These proofs capture a wide range of topics, including number theory, combinatorics, graph theory, the theory of games, geometry, infinity, order theory, and real analysis. The goal is to show students and aspiring mathematicians how to write proofs with elegance and precision.
This book offers an introduction to the art and craft of proof-writing. The author, a leading research mathematician, presents a series of engaging and compelling mathematical statements with interesting elementary proofs. These proofs capture a wide range of topics, including number theory, combinatorics, graph theory, the theory of games, geometry, infinity, order theory, and real analysis. The goal is to show students and aspiring mathematicians how to write proofs with elegance and precision.
Alternative description
A classical beginning -- Multiple proof -- Number theory -- Mathematical induction -- Discrete mathematics -- Proofs without words -- Theory of games -- Pick's theorem -- Lattice-point polygons -- Polygonal dissection -- Functions and relations -- Graph theory -- Infinity -- Order theory -- Real analysis
Alternative description
"A textbook for students who are learning how to write a mathematical proof, a validation of the truth of a mathematical statement"-- Provided by publisher
date open sourced
2021-10-24
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
- Option #1: Fast Partner Server #1 (recommended) (open in viewer) (no redirect) (short filename) (no browser verification or waitlists)
- Option #2: Fast Partner Server #2 (open in viewer) (no redirect) (short filename)
- Option #3: Fast Partner Server #3 (open in viewer) (no redirect) (short filename)
- Option #4: Fast Partner Server #4 (open in viewer) (no redirect) (short filename)
- Option #5: Fast Partner Server #5 (open in viewer) (no redirect) (short filename)
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Option #1: Slow Partner Server #1 (slightly faster but with waitlist)
- Option #2: Slow Partner Server #2 (slightly faster but with waitlist)
- Option #3: Slow Partner Server #3 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
External downloads
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.