English [en], .pdf, 🚀/lgli/lgrs/nexusstc/upload/zlib, 17.0MB, 📘 Book (non-fiction), upload/wll/ENTER/Science/IT & AI/1 - More books on Nanoscience/Nanomedicine & Nanobiology/Biomechanics at Micro- and Nanoscale Levels, v.III, 2007, p.182.pdf
Biomechanics At Micro- And Nanoscale Levels - Volume Iv 🔍
World Scientific Publishing Company, volume IV, 2005
editor, Hiroshi Wada 🔍
description
This book is essential reading for those interested in understanding current trends of research in the area of biomechanics at micro- and nanoscale levels. It details the research carried out to date in this field by fourteen prominent researchers as part of a four-year government supported project which commenced in 2003. It consists of four chapters entitled Cell Mechanics, Cell Response to Mechanical Stimulation, Tissue Engineering and Computational Biomechanics.
Alternative filename
nexusstc/Biomechanics at micro-and nanoscale levels/ce68ef1070c7fd242df912d0c1c9a575.pdf
Alternative title
Biomechanics at micro- and nanoscale levels : [last volume ... this four-year-project finished in March 2007
Alternative title
Biomechanics at micro- and nanoscale levels. Vol. I : morphogenesis
Alternative title
Biomechanics at Micro - and Nanoscale Levels (181 pages)
Alternative title
Biomechanics at Micro- And Nanoscale Levels, Volume 3
Alternative title
Biomechanics at micro- and nanoscale levels: volume 1
Alternative publisher
World Scientific Publishing Co Pte Ltd
Alternative edition
Biomechanics at micro- and nanoscale levels, Singapore, 2007
Alternative edition
World Scientific Publishing Company, New Jersey, 2006
Alternative edition
World Scientific Publishing Company, Singapore, 2005
Alternative edition
World Scientific Publishing Company, Singapore, 2007
Alternative edition
Singapore, Hackensack, NJ, United States, 2004
Alternative edition
Hackensack, NJ ; Singapore, ©2005
Alternative edition
Hackensack, NJ ; London, ©2006
Alternative edition
1 edition, June 22, 2007
Alternative edition
Singapore, ©2005-<2007>
Alternative edition
Singapore, Singapore
Alternative edition
September 24, 2007
Alternative edition
March 30, 2005
Alternative edition
April 30, 2006
Alternative edition
1, PS, 2007
metadata comments
NanoScience -- 0
metadata comments
lg219357
metadata comments
producers:
AFPL Ghostscript 8.50
AFPL Ghostscript 8.50
metadata comments
{"isbns":["9789812560988","9789812567468","9789812708144","9789812771315","981256098X","9812567461","9812708146","981277131X"],"last_page":178,"publisher":"World Scientific","volume":"volume IV"}
Alternative description
CONTENTS 9
PREFACE 6
FOREWORD 7
I. CELL MECHANICS 12
The effect of streptomycin and gentamicin on outer hair cell motility B. Currall, X. Wang and D. Z. Z. He 14
1 Introduction 14
2 Materials and Methods 15
2.1 Preparation of isolated OHCs 15
2.2 Whole-cell voltage-clamp recording 15
2.3 Somatic motility measurements 16
2.4 Nonlinear capacitance measurements 16
3 Results 17
3.1 Extracellular application of streptomycin and gentamicin 17
3.2 Intracellular application of streptomycin 19
4 Discussion 20
Acknowledgment 21
References 21
Mechanotransduction in bone cell networks X. E. Guo, E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung and K. D. Costa 24
1 Introduction 25
2 Materials and Methods 26
2.1 Microcontact printing for the formation of controlled bone cell networks 26
2.2 Optimization of geometric parameters for bone cell network formation 27
2.3 Assessment of gap junction formation 28
2.4 Single-cell nanoindentation using atomic force microscopy 29
3 Results 31
3.1 Assessment of cell patterning 31
3.2 Calcium wave propagation in bone cell networks 34
4 Discussion 37
5 Conclusions 42
Acknowledgments 43
References 43
Intracellular measurements of strain transfer with texture correlation C. L. Gilchrist, F. Guilak and L. A. Setton 47
1 Introduction 47
2 Materials and Methods 48
2.1 Primary cell isolation and culture 48
2.2 Stretch experiments 49
2.3 Displacement measurement and strain calculations 49
2.4 Intracellular strain calculations following stretch 50
3 Results 51
3.1 Cell stretching experiments 51
4 Discussion 54
Acknowledgments 56
References 56
II. CELL RESPONSE TO MECHANICAL STIMULATION 60
Identifying the mechanisms of flow-enhanced cell adhesion via dimensional analysis C. Zhu, V. I. Zarnitsyna, T. Yago and R. P. McEver 62
1 Introduction 62
2 Transport Governs Flow-enhanced Cell Tethering 64
2.1 Conceptual scheme of tethering process 64
2.2 Enhancing tethering by mean sliding velocity 65
2.3 Enhancing tethering by Brownian motion 66
2.4 Enhancing tethering by molecular diffusion 67
3 Catch Bonds Govern Flow-enhanced Cell Rolling 69
3.1 Conceptual scheme of rolling process 69
3.2 Rolling velocity scales with tether force 70
3.3 Off-rate curves and rolling velocity curves correlate and scale similarly 71
3.4 Off-rate curves and curves of multiple rolling regularity metrics correlate and scale similarly 72
4 Discussion and Conclusion 74
Acknowledgments 75
References 75
A sliding-rebinding mechanism for catch bonds J. Lou, C. Zhu, T. Yago and R. P. McEver 77
1 Introduction 77
2 Structures of Selectins and Selectin-Ligand Complexes 78
3 MD Simulations of Selectins and Selectin-Ligand Complexes 80
3.1 Free dynamics simulations of selectin lectin-EGF domains 80
3.2 SMD simulations of unbinding of selectin-ligand complexes 81
4 Sliding-Rebinding Mechanism and Pseudoatom Representation 83
5 Testing the Sliding-Rebinding Mechanism by Mutagenesis Studies 87
6 Discussion and Conclusion 88
Acknowledgments 89
References 89
Role of external mechanical forces in cell signal transduction S. R. K. Vedula, C. T. Lim, T. S. Lim, G. Rajagopal, W. Hunziker, B. Lane and M. Sokabe 91
1 Introduction 92
1.1 Mechanotransduction process 92
2 Mechanosensing 94
2.1 Mechanosensitive or stretch sensitive ion channels 94
2.1.1 Models for the functioning of MS channels 94
2.2 Integrins 96
2.3 Intercellular adhesion molecules 97
2.4 Cytoskeleton 98
2.5 Other receptors (GPCR and RTK) 99
2.6 Membrane fluidity 99
3 Mechanotransduction 99
3.1 Mechanosensitive (MS) ion channels 99
3.1.1 Elevation of intracellular calcium levels 100
3.1.2 Mechanosensitive (MS) ATP Release 100
3.2 Integrins, Focal Complex (FC) & Focal Adhesion (FA) 102
3.2.1 FAK pathway 102
3.2.2 Fyn/Shc pathway 102
3.2.3 Rho family GTPases 103
3.2.4 Tyrosine phosphatases 103
4 Mechanoresponse 105
5 Conclusion 105
References 105
III. TISSUE ENGINEERING 116
Evaluation of material property of tissue-engineered cartilage by magnetic resonance imaging and spectroscopy S. Miyata, K. Homma, T. Numano, K. Furukawa, T. Ushida and T. Tateishi 118
1 Introduction 118
2 Materials and Methods 119
2.1 Isolation of chondrocytes and preparation of chondrocyte/agarose constructs 119
2.2 1H-NMR spectroscopy 120
2.3 FCD measurements by Gd-DTPA2- enhanced MRI 120
2.4 Histological analysis 122
2.5 Determination of total sulfated glycosaminoglycan contents 122
3 Results 122
4 Discussion 124
Acknowledgments 127
References 127
Scaffolding technology for cartilage and osteochondral tissue engineering G. Chen, N. Kawazoe, T. Tateishi and T. Ushida 129
1 Introduction 129
2 Hybrid Porous Scaffolds 130
3 Biphasic Porous Scaffold 133
4 Cartilage Tissue Engineering Using Hybrid Scaffolds 133
5 Osteochondral Tissue Engineering Using Hybrid and Biphasic Scaffolds 136
6 Conclusions 138
Acknowledgments 139
References 139
IV. COMPUTATIONAL BIOMECHANICS 142
MRI measurements and CFD analysis of hemodynamics in the aorta and the left ventricle M. Nakamura, S. Wada, S. Yokosawa and T. Yamaguchi 144
1 Introduction 144
2 Methods 145
2.1 Measurement of the aortic geometry and flow using MRI 145
2.2 Aorta models 146
2.3 Left ventricle model 146
2.4 Blood flow model 147
2.5 Simulation condition and procedure 147
2.6 Hemodynamics factors 148
3 Results 148
3.1 Importance of the inflow condition at the aorta 148
3.1.1 Flow simulation with an integrated model of the left ventricular and the aorta 148
3.1.2 Measurement of the flow dynamics just above the aortic annulus 150
3.2 Hemodynamics in the aorta models with/without tapering and branches 150
4 Discussion 153
4.1 Significance of the inflow condition on the aortic hemodynamics 153
4.2 Significance of the branches and tapering of the aorta 153
5 Conclusions 154
Acknowledgments 154
References 155
A fluid-solid interactions study of the pulse wave velocity in uniform arteries T. Fukui, Y. Imai, K. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi and K. H. Parker 157
1 Introduction 157
2 Methods 159
2.1 Numerical models 159
2.2 Governing equations and computational code 161
2.3 Boundary conditions 161
3 Results 162
3.1 Wave propagation 162
3.2 Velocity waveforms 162
3.3 Pulse wave velocity 163
3.4 PWV comparison between computation and theoretical values 164
4 Discussion 165
5 Conclusions 166
Acknowledgments 166
References 167
Rule-based simulation of arterial wall thickening induced by low wall shear stress S. Wada, M. Nakamura and T. Karino 168
1 Introduction 168
2 Methods 169
2.1 Initial geometry of the blood vessel 169
2.2 Blood flow analysis 170
2.3 Thickening of the vessel wall 170
2.4 Procedure of computer simulation 171
3 Results and Discussion 171
4 Conclusions 175
Acknowledgments 176
References 176
SUBJECT INDEX 178
PREFACE 6
FOREWORD 7
I. CELL MECHANICS 12
The effect of streptomycin and gentamicin on outer hair cell motility B. Currall, X. Wang and D. Z. Z. He 14
1 Introduction 14
2 Materials and Methods 15
2.1 Preparation of isolated OHCs 15
2.2 Whole-cell voltage-clamp recording 15
2.3 Somatic motility measurements 16
2.4 Nonlinear capacitance measurements 16
3 Results 17
3.1 Extracellular application of streptomycin and gentamicin 17
3.2 Intracellular application of streptomycin 19
4 Discussion 20
Acknowledgment 21
References 21
Mechanotransduction in bone cell networks X. E. Guo, E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung and K. D. Costa 24
1 Introduction 25
2 Materials and Methods 26
2.1 Microcontact printing for the formation of controlled bone cell networks 26
2.2 Optimization of geometric parameters for bone cell network formation 27
2.3 Assessment of gap junction formation 28
2.4 Single-cell nanoindentation using atomic force microscopy 29
3 Results 31
3.1 Assessment of cell patterning 31
3.2 Calcium wave propagation in bone cell networks 34
4 Discussion 37
5 Conclusions 42
Acknowledgments 43
References 43
Intracellular measurements of strain transfer with texture correlation C. L. Gilchrist, F. Guilak and L. A. Setton 47
1 Introduction 47
2 Materials and Methods 48
2.1 Primary cell isolation and culture 48
2.2 Stretch experiments 49
2.3 Displacement measurement and strain calculations 49
2.4 Intracellular strain calculations following stretch 50
3 Results 51
3.1 Cell stretching experiments 51
4 Discussion 54
Acknowledgments 56
References 56
II. CELL RESPONSE TO MECHANICAL STIMULATION 60
Identifying the mechanisms of flow-enhanced cell adhesion via dimensional analysis C. Zhu, V. I. Zarnitsyna, T. Yago and R. P. McEver 62
1 Introduction 62
2 Transport Governs Flow-enhanced Cell Tethering 64
2.1 Conceptual scheme of tethering process 64
2.2 Enhancing tethering by mean sliding velocity 65
2.3 Enhancing tethering by Brownian motion 66
2.4 Enhancing tethering by molecular diffusion 67
3 Catch Bonds Govern Flow-enhanced Cell Rolling 69
3.1 Conceptual scheme of rolling process 69
3.2 Rolling velocity scales with tether force 70
3.3 Off-rate curves and rolling velocity curves correlate and scale similarly 71
3.4 Off-rate curves and curves of multiple rolling regularity metrics correlate and scale similarly 72
4 Discussion and Conclusion 74
Acknowledgments 75
References 75
A sliding-rebinding mechanism for catch bonds J. Lou, C. Zhu, T. Yago and R. P. McEver 77
1 Introduction 77
2 Structures of Selectins and Selectin-Ligand Complexes 78
3 MD Simulations of Selectins and Selectin-Ligand Complexes 80
3.1 Free dynamics simulations of selectin lectin-EGF domains 80
3.2 SMD simulations of unbinding of selectin-ligand complexes 81
4 Sliding-Rebinding Mechanism and Pseudoatom Representation 83
5 Testing the Sliding-Rebinding Mechanism by Mutagenesis Studies 87
6 Discussion and Conclusion 88
Acknowledgments 89
References 89
Role of external mechanical forces in cell signal transduction S. R. K. Vedula, C. T. Lim, T. S. Lim, G. Rajagopal, W. Hunziker, B. Lane and M. Sokabe 91
1 Introduction 92
1.1 Mechanotransduction process 92
2 Mechanosensing 94
2.1 Mechanosensitive or stretch sensitive ion channels 94
2.1.1 Models for the functioning of MS channels 94
2.2 Integrins 96
2.3 Intercellular adhesion molecules 97
2.4 Cytoskeleton 98
2.5 Other receptors (GPCR and RTK) 99
2.6 Membrane fluidity 99
3 Mechanotransduction 99
3.1 Mechanosensitive (MS) ion channels 99
3.1.1 Elevation of intracellular calcium levels 100
3.1.2 Mechanosensitive (MS) ATP Release 100
3.2 Integrins, Focal Complex (FC) & Focal Adhesion (FA) 102
3.2.1 FAK pathway 102
3.2.2 Fyn/Shc pathway 102
3.2.3 Rho family GTPases 103
3.2.4 Tyrosine phosphatases 103
4 Mechanoresponse 105
5 Conclusion 105
References 105
III. TISSUE ENGINEERING 116
Evaluation of material property of tissue-engineered cartilage by magnetic resonance imaging and spectroscopy S. Miyata, K. Homma, T. Numano, K. Furukawa, T. Ushida and T. Tateishi 118
1 Introduction 118
2 Materials and Methods 119
2.1 Isolation of chondrocytes and preparation of chondrocyte/agarose constructs 119
2.2 1H-NMR spectroscopy 120
2.3 FCD measurements by Gd-DTPA2- enhanced MRI 120
2.4 Histological analysis 122
2.5 Determination of total sulfated glycosaminoglycan contents 122
3 Results 122
4 Discussion 124
Acknowledgments 127
References 127
Scaffolding technology for cartilage and osteochondral tissue engineering G. Chen, N. Kawazoe, T. Tateishi and T. Ushida 129
1 Introduction 129
2 Hybrid Porous Scaffolds 130
3 Biphasic Porous Scaffold 133
4 Cartilage Tissue Engineering Using Hybrid Scaffolds 133
5 Osteochondral Tissue Engineering Using Hybrid and Biphasic Scaffolds 136
6 Conclusions 138
Acknowledgments 139
References 139
IV. COMPUTATIONAL BIOMECHANICS 142
MRI measurements and CFD analysis of hemodynamics in the aorta and the left ventricle M. Nakamura, S. Wada, S. Yokosawa and T. Yamaguchi 144
1 Introduction 144
2 Methods 145
2.1 Measurement of the aortic geometry and flow using MRI 145
2.2 Aorta models 146
2.3 Left ventricle model 146
2.4 Blood flow model 147
2.5 Simulation condition and procedure 147
2.6 Hemodynamics factors 148
3 Results 148
3.1 Importance of the inflow condition at the aorta 148
3.1.1 Flow simulation with an integrated model of the left ventricular and the aorta 148
3.1.2 Measurement of the flow dynamics just above the aortic annulus 150
3.2 Hemodynamics in the aorta models with/without tapering and branches 150
4 Discussion 153
4.1 Significance of the inflow condition on the aortic hemodynamics 153
4.2 Significance of the branches and tapering of the aorta 153
5 Conclusions 154
Acknowledgments 154
References 155
A fluid-solid interactions study of the pulse wave velocity in uniform arteries T. Fukui, Y. Imai, K. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi and K. H. Parker 157
1 Introduction 157
2 Methods 159
2.1 Numerical models 159
2.2 Governing equations and computational code 161
2.3 Boundary conditions 161
3 Results 162
3.1 Wave propagation 162
3.2 Velocity waveforms 162
3.3 Pulse wave velocity 163
3.4 PWV comparison between computation and theoretical values 164
4 Discussion 165
5 Conclusions 166
Acknowledgments 166
References 167
Rule-based simulation of arterial wall thickening induced by low wall shear stress S. Wada, M. Nakamura and T. Karino 168
1 Introduction 168
2 Methods 169
2.1 Initial geometry of the blood vessel 169
2.2 Blood flow analysis 170
2.3 Thickening of the vessel wall 170
2.4 Procedure of computer simulation 171
3 Results and Discussion 171
4 Conclusions 175
Acknowledgments 176
References 176
SUBJECT INDEX 178
Alternative description
CONTENTS......Page 9
PREFACE......Page 6
FOREWORD......Page 7
I. CELL MECHANICS......Page 12
1 Introduction......Page 14
2.2 Whole-cell voltage-clamp recording......Page 15
2.4 Nonlinear capacitance measurements......Page 16
3.1 Extracellular application of streptomycin and gentamicin......Page 17
3.2 Intracellular application of streptomycin......Page 19
4 Discussion......Page 20
References......Page 21
Mechanotransduction in bone cell networks X. E. Guo, E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung and K. D. Costa......Page 24
1 Introduction......Page 25
2.1 Microcontact printing for the formation of controlled bone cell networks......Page 26
2.2 Optimization of geometric parameters for bone cell network formation......Page 27
2.3 Assessment of gap junction formation......Page 28
2.4 Single-cell nanoindentation using atomic force microscopy......Page 29
3.1 Assessment of cell patterning......Page 31
3.2 Calcium wave propagation in bone cell networks......Page 34
4 Discussion......Page 37
5 Conclusions......Page 42
References......Page 43
1 Introduction......Page 47
2.1 Primary cell isolation and culture......Page 48
2.3 Displacement measurement and strain calculations......Page 49
2.4 Intracellular strain calculations following stretch......Page 50
3.1 Cell stretching experiments......Page 51
4 Discussion......Page 54
References......Page 56
II. CELL RESPONSE TO MECHANICAL STIMULATION......Page 60
1 Introduction......Page 62
2.1 Conceptual scheme of tethering process......Page 64
2.2 Enhancing tethering by mean sliding velocity......Page 65
2.3 Enhancing tethering by Brownian motion......Page 66
2.4 Enhancing tethering by molecular diffusion......Page 67
3.1 Conceptual scheme of rolling process......Page 69
3.2 Rolling velocity scales with tether force......Page 70
3.3 Off-rate curves and rolling velocity curves correlate and scale similarly......Page 71
3.4 Off-rate curves and curves of multiple rolling regularity metrics correlate and scale similarly......Page 72
4 Discussion and Conclusion......Page 74
References......Page 75
1 Introduction......Page 77
2 Structures of Selectins and Selectin-Ligand Complexes......Page 78
3.1 Free dynamics simulations of selectin lectin-EGF domains......Page 80
3.2 SMD simulations of unbinding of selectin-ligand complexes......Page 81
4 Sliding-Rebinding Mechanism and Pseudoatom Representation......Page 83
5 Testing the Sliding-Rebinding Mechanism by Mutagenesis Studies......Page 87
6 Discussion and Conclusion......Page 88
References......Page 89
Role of external mechanical forces in cell signal transduction S. R. K. Vedula, C. T. Lim, T. S. Lim, G. Rajagopal, W. Hunziker, B. Lane and M. Sokabe......Page 91
1.1 Mechanotransduction process......Page 92
2.1.1 Models for the functioning of MS channels......Page 94
2.2 Integrins......Page 96
2.3 Intercellular adhesion molecules......Page 97
2.4 Cytoskeleton......Page 98
3.1 Mechanosensitive (MS) ion channels......Page 99
3.1.2 Mechanosensitive (MS) ATP Release......Page 100
3.2.2 Fyn/Shc pathway......Page 102
3.2.4 Tyrosine phosphatases......Page 103
References......Page 105
III. TISSUE ENGINEERING......Page 116
1 Introduction......Page 118
2.1 Isolation of chondrocytes and preparation of chondrocyte/agarose constructs......Page 119
2.3 FCD measurements by Gd-DTPA2- enhanced MRI......Page 120
3 Results......Page 122
4 Discussion......Page 124
References......Page 127
1 Introduction......Page 129
2 Hybrid Porous Scaffolds......Page 130
4 Cartilage Tissue Engineering Using Hybrid Scaffolds......Page 133
5 Osteochondral Tissue Engineering Using Hybrid and Biphasic Scaffolds......Page 136
6 Conclusions......Page 138
References......Page 139
IV. COMPUTATIONAL BIOMECHANICS......Page 142
1 Introduction......Page 144
2.1 Measurement of the aortic geometry and flow using MRI......Page 145
2.3 Left ventricle model......Page 146
2.5 Simulation condition and procedure......Page 147
3.1.1 Flow simulation with an integrated model of the left ventricular and the aorta......Page 148
3.2 Hemodynamics in the aorta models with/without tapering and branches......Page 150
4.2 Significance of the branches and tapering of the aorta......Page 153
Acknowledgments......Page 154
References......Page 155
1 Introduction......Page 157
2.1 Numerical models......Page 159
2.3 Boundary conditions......Page 161
3.2 Velocity waveforms......Page 162
3.3 Pulse wave velocity......Page 163
3.4 PWV comparison between computation and theoretical values......Page 164
4 Discussion......Page 165
Acknowledgments......Page 166
References......Page 167
1 Introduction......Page 168
2.1 Initial geometry of the blood vessel......Page 169
2.3 Thickening of the vessel wall......Page 170
3 Results and Discussion......Page 171
4 Conclusions......Page 175
References......Page 176
SUBJECT INDEX......Page 178
PREFACE......Page 6
FOREWORD......Page 7
I. CELL MECHANICS......Page 12
1 Introduction......Page 14
2.2 Whole-cell voltage-clamp recording......Page 15
2.4 Nonlinear capacitance measurements......Page 16
3.1 Extracellular application of streptomycin and gentamicin......Page 17
3.2 Intracellular application of streptomycin......Page 19
4 Discussion......Page 20
References......Page 21
Mechanotransduction in bone cell networks X. E. Guo, E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung and K. D. Costa......Page 24
1 Introduction......Page 25
2.1 Microcontact printing for the formation of controlled bone cell networks......Page 26
2.2 Optimization of geometric parameters for bone cell network formation......Page 27
2.3 Assessment of gap junction formation......Page 28
2.4 Single-cell nanoindentation using atomic force microscopy......Page 29
3.1 Assessment of cell patterning......Page 31
3.2 Calcium wave propagation in bone cell networks......Page 34
4 Discussion......Page 37
5 Conclusions......Page 42
References......Page 43
1 Introduction......Page 47
2.1 Primary cell isolation and culture......Page 48
2.3 Displacement measurement and strain calculations......Page 49
2.4 Intracellular strain calculations following stretch......Page 50
3.1 Cell stretching experiments......Page 51
4 Discussion......Page 54
References......Page 56
II. CELL RESPONSE TO MECHANICAL STIMULATION......Page 60
1 Introduction......Page 62
2.1 Conceptual scheme of tethering process......Page 64
2.2 Enhancing tethering by mean sliding velocity......Page 65
2.3 Enhancing tethering by Brownian motion......Page 66
2.4 Enhancing tethering by molecular diffusion......Page 67
3.1 Conceptual scheme of rolling process......Page 69
3.2 Rolling velocity scales with tether force......Page 70
3.3 Off-rate curves and rolling velocity curves correlate and scale similarly......Page 71
3.4 Off-rate curves and curves of multiple rolling regularity metrics correlate and scale similarly......Page 72
4 Discussion and Conclusion......Page 74
References......Page 75
1 Introduction......Page 77
2 Structures of Selectins and Selectin-Ligand Complexes......Page 78
3.1 Free dynamics simulations of selectin lectin-EGF domains......Page 80
3.2 SMD simulations of unbinding of selectin-ligand complexes......Page 81
4 Sliding-Rebinding Mechanism and Pseudoatom Representation......Page 83
5 Testing the Sliding-Rebinding Mechanism by Mutagenesis Studies......Page 87
6 Discussion and Conclusion......Page 88
References......Page 89
Role of external mechanical forces in cell signal transduction S. R. K. Vedula, C. T. Lim, T. S. Lim, G. Rajagopal, W. Hunziker, B. Lane and M. Sokabe......Page 91
1.1 Mechanotransduction process......Page 92
2.1.1 Models for the functioning of MS channels......Page 94
2.2 Integrins......Page 96
2.3 Intercellular adhesion molecules......Page 97
2.4 Cytoskeleton......Page 98
3.1 Mechanosensitive (MS) ion channels......Page 99
3.1.2 Mechanosensitive (MS) ATP Release......Page 100
3.2.2 Fyn/Shc pathway......Page 102
3.2.4 Tyrosine phosphatases......Page 103
References......Page 105
III. TISSUE ENGINEERING......Page 116
1 Introduction......Page 118
2.1 Isolation of chondrocytes and preparation of chondrocyte/agarose constructs......Page 119
2.3 FCD measurements by Gd-DTPA2- enhanced MRI......Page 120
3 Results......Page 122
4 Discussion......Page 124
References......Page 127
1 Introduction......Page 129
2 Hybrid Porous Scaffolds......Page 130
4 Cartilage Tissue Engineering Using Hybrid Scaffolds......Page 133
5 Osteochondral Tissue Engineering Using Hybrid and Biphasic Scaffolds......Page 136
6 Conclusions......Page 138
References......Page 139
IV. COMPUTATIONAL BIOMECHANICS......Page 142
1 Introduction......Page 144
2.1 Measurement of the aortic geometry and flow using MRI......Page 145
2.3 Left ventricle model......Page 146
2.5 Simulation condition and procedure......Page 147
3.1.1 Flow simulation with an integrated model of the left ventricular and the aorta......Page 148
3.2 Hemodynamics in the aorta models with/without tapering and branches......Page 150
4.2 Significance of the branches and tapering of the aorta......Page 153
Acknowledgments......Page 154
References......Page 155
1 Introduction......Page 157
2.1 Numerical models......Page 159
2.3 Boundary conditions......Page 161
3.2 Velocity waveforms......Page 162
3.3 Pulse wave velocity......Page 163
3.4 PWV comparison between computation and theoretical values......Page 164
4 Discussion......Page 165
Acknowledgments......Page 166
References......Page 167
1 Introduction......Page 168
2.1 Initial geometry of the blood vessel......Page 169
2.3 Thickening of the vessel wall......Page 170
3 Results and Discussion......Page 171
4 Conclusions......Page 175
References......Page 176
SUBJECT INDEX......Page 178
Alternative description
This volume contains the proceedings of the 8th Epioptics Workshop, held at the Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily. The book assesses the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures. The contributions consider the usefulness of these techniques for optimization of high quality multilayer samples through feedback control during materials growth and processing. Particular emphasis is placed on the theory of non-linear optics and on dynamical processes through the use of pump-probe techniques together with the search for new optical sources. Some new applications of Scanning Near-field Optical Microscopy to material science and biological samples, dried and in vivo, with the use of different laser sources are also included
Alternative description
A project on “Biomechanics at Micro- and Nanoscale Levels”, the title of this book, was approved by the Ministry of Education, Culture, Sports, Science and Technology of Japan in 2003; and this four-year project is now being carried out by fourteen prominent Japanese researchers.At the 5th World Congress of Biomechanics held in Munich, Germany, from 29th July to 4th August, 2006, we organized the following sessions: Thread 3: Biomechanics at micro- and nanoscale levels — (1) cell mechanics; (2) molecular biomechanics; (3) mechanobiology at micro- and nanoscale levels; and (4) computational biomechanics. The present proceedings volume covers topics related to these sessions, and follows on from where the previous two volumes left off. This book is essential reading for those interested in understanding current trends of research in the area of biomechanics at micro- and nanoscale levels.
Alternative description
A project on “Biomechanics at Micro- and Nanoscale Levels”, the title of this book, was approved by the Ministry of Education, Culture, Sports, Science and Technology of Japan in 2003; and this four-year project is now being carried out by fourteen prominent Japanese researchers. At the 5th World Congress of Biomechanics held in Munich, Germany, from 29th July to 4th August, 2006, we organized the following sessions: Thread 3: Biomechanics at micro- and nanoscale levels — (1) cell mechanics; (2) molecular biomechanics; (3) mechanobiology at micro- and nanoscale levels; and (4) computational biomechanics. The present proceedings volume covers topics related to these sessions, and follows on from where the previous two volumes left off. This book is essential reading for those interested in understanding current trends of research in the area of biomechanics at micro- and nanoscale levels
Alternative description
A project on “Biomechanics at Micro- and Nanoscale Levels”, the title of this book, was approved by the Ministry of Education, Culture, Sports, Science and Technology of Japan in 2003. This 4-year-project was carried out by 14 prominent Japanese researchers and ended in late March 2007. The project consisted of four fields of research, namely, cell mechanics, cell response to mechanical stimulation, tissue engineering, and computational biomechanics.A series of four books related to this project was published between 2003 and 2007. The present volume is the last book in this series, and summarizes the research results achieved by project members throughout its 4-year duration. This book is essential reading for those interested in understanding current trends of research in the area of biomechanics at micro- and nanoscale levels.
Alternative description
<p>this Book Is Essential Reading For Those Interested In Understanding Current Research Trends In Biomechanics At Micro- And Nanoscale Levels. It Details The Research Carried Out To Date In This Field By Fourteen Prominent Researchers As Part Of A Four-year Government Supported Project Which Commenced In 2003. The Coverage Includes Four Broad Areas: Cell Mechanics, Cell Response To Mechanical Stimulation, Tissue Engineering, And Computational Biomechanics.</p>
date open sourced
2010-02-18
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
- Option #1: Fast Partner Server #1 (recommended) (open in viewer) (no redirect) (short filename) (no browser verification or waitlists)
- Option #2: Fast Partner Server #2 (open in viewer) (no redirect) (short filename)
- Option #3: Fast Partner Server #3 (open in viewer) (no redirect) (short filename)
- Option #4: Fast Partner Server #4 (open in viewer) (no redirect) (short filename)
- Option #5: Fast Partner Server #5 (open in viewer) (no redirect) (short filename)
- Option #6: Fast Partner Server #6 (open in viewer) (no redirect) (short filename)
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Option #1: Slow Partner Server #1 (slightly faster but with waitlist)
- Option #2: Slow Partner Server #2 (slightly faster but with waitlist)
- Option #3: Slow Partner Server #3 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
External downloads
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.