English [en], .pdf, 🚀/lgli/lgrs, 224.3MB, 📘 Book (non-fiction), lgrsnf/Digital Image Processing and Analysis Digital Image Enhancement, Restoration and Compression.pdf
Digital Image Enhancement, Restoration and Compression. Digital Image Processing and Analysis 🔍
Taylor & Francis Group; CRC Press, 4th edition, Boca Raton, 2023
Scott E. Umbaugh 🔍
description
Digital Image Enhancement, Restoration and Compression focuses on human vision-based imaging application development. Examples include making poor images look better, the development of advanced compression algorithms, special effects imaging for motion pictures and the restoration of satellite images distorted by atmospheric disturbance. This book presents a unique engineering approach to the practice of digital imaging, which starts by presenting a global model to help gain an understanding of the overall process, followed by a breakdown and explanation of each individual topic. Topics are presented as they become necessary for understanding the practical imaging model under study, which provides the reader with the motivation to learn about and use the tools and methods being explored.The book includes chapters on imaging systems and software, the human visual system, image transforms, image filtering, image enhancement, image restoration, and image compression. Numerous examples, including over 700 color images, are used to illustrate the concepts discussed. Readers can explore their own application development with any programming language, including C/C++, MATLAB®, Python and R, and software is provided for both the Windows/C/C++ and MATLAB environments.The book can be used by the academic community in teaching and research, with over 1,000 PowerPoint slides and a complete solutions manual to the over 230 included problems. It can also be used for self-study by those involved with application development, whether they are engineers, scientists or artists. The new edition has been extensively updated and includes numerous problems and programming exercises that will help the reader and student develop their skills.
Alternative filename
lgli/Digital Image Processing and Analysis Digital Image Enhancement, Restoration and Compression.pdf
Alternative title
Digital Image Processing and Analysis : Digital Image Enhancement, Restoration and Compression
Alternative publisher
CRC Press, Taylor & Francis Group
Alternative publisher
Taylor & Francis Ltd
Alternative edition
United Kingdom and Ireland, United Kingdom
Alternative edition
Fourth edition, Boca Raton, FL, 2023
Alternative edition
Fourth edition, Boca Raton, 2022
Alternative edition
CRC Press LLC, Boca Raton, 2023
Alternative description
Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
Author
1 Digital Image Processing and Analysis
1.1 Overview
1.2 Image Processing and Human Vision
1.3 Digital Imaging Systems
1.4 Image Formation and Sensing
1.4.1 Visible Light Imaging
1.4.2 Imaging Outside the Visible Range of the EM Spectrum
1.4.3 Acoustic Imaging
1.4.4 Electron Imaging
1.4.5 Laser Imaging
1.4.6 Computer-Generated Images
1.5 Image Representation
1.5.1 Binary Images
1.5.2 Gray-Scale Images
1.5.3 Color Images
1.5.4 Multispectral and Multiband Images
1.5.5 Digital Image File Formats
1.6 Key Points
1.7 References and Further Reading
References
1.8 Exercises
2 Image Processing Development Tools
2.1 Introduction and Overview
2.2 CVIPtools Windows GUI
2.2.1 Image Viewer
2.2.2 Analysis Window
2.2.3 Enhancement Window
2.2.4 Restoration Window
2.2.5 Compression Window
2.2.6 Utilities Window
2.2.7 Help Window
2.2.8 Development Tools
2.3 CVIPlab for C/C++ Programming
2.3.1 Toolkit, Toolbox Libraries and Memory Management in C/C++
2.3.2 Image Data and File Structures
2.4 The MATLAB CVIP Toolbox
2.4.1 Help Files
2.4.2 M-Files
2.4.3 CVIPtools for MATLAB GUI
2.4.4 CVIPlab for MATLAB
2.4.5 Vectorization
2.4.6 Using CVIPlab for MATLAB
2.4.7 Adding a Function
2.4.8 A Sample Batch Processing M-File
2.4.9 VIPM File Format
2.5 References and Further Reading
References
2.6 Introductory Programming Exercises
2.7 Digital Image Processing and Human Vision Projects
3 Digital Image Processing and Visual Perception
3.1 Introduction
3.2 Image Analysis
3.2.1 Overview
3.2.2 System Model
3.3 Human Visual Perception
3.3.1 The Human Visual System
3.3.2 Spatial Frequency Resolution
3.3.3 Brightness Adaptation and Perception
3.3.4 Temporal Resolution
3.3.5 Perception and Illusion
3.4 Image Fidelity Criteria
3.4.1 Objective Fidelity Measures
3.4.2 Subjective Fidelity Measures
3.5 Key Points
3.6 References and Further Reading
References
3.7 Exercises
3.8 Supplementary Exercises
4 Discrete Transforms
4.1 Introduction and Overview
4.2 Fourier Transform
4.2.1 The One-Dimensional Discrete Fourier Transform
4.2.2 Two-Dimensional Discrete Fourier Transform
4.2.3 Fourier Transform Properties
4.2.3.1 Linearity
4.2.3.2 Convolution
4.2.3.3 Translation
4.2.3.4 Modulation
4.2.3.5 Rotation
4.2.3.6 Periodicity
4.2.3.7 Sampling and Aliasing
4.2.4 Displaying the Discrete Fourier Spectrum
4.3 Discrete Cosine Transform
4.4 Discrete Walsh–Hadamard Transform
4.5 Discrete Haar Transform
4.6 Principal Components Transform
4.7 Key Points
4.8 References and Further Reading
References
4.9 Exercises
4.10 Supplementary Exercises
5 Transform Filters, Spatial Filters and the Wavelet Transform
5.1 Introduction and Overview
5.2 Lowpass Filters
5.3 Highpass Filters
5.4 Bandpass, Bandreject and Notch Filters
5.5 Spatial Filtering via Convolution
5.5.1 Lowpass Filtering in the Spatial Domain
5.5.2 Highpass Filtering in the Spatial Domain
5.5.3 Bandpass and Bandreject Filtering in the Spatial Domain
5.6 Discrete Wavelet Transform
5.7 Key Points
5.8 References and Further Reading
References
5.9 Exercises
5.10 Supplementary Exercises
6 Image Enhancement
6.1 Introduction and Overview
6.2 Gray-Scale Modification
6.2.1 Mapping Equations
6.2.2 Histogram Modification
6.2.3 Adaptive Contrast Enhancement
6.2.4 Color
6.3 Image Sharpening
6.3.1 Highpass Filtering
6.3.2 High-Frequency Emphasis (HFE)
6.3.3 Directional Difference Filters
6.3.4 Homomorphic Filtering
6.3.5 Unsharp Masking
6.3.6 Edge Detector–Based Sharpening Algorithms
6.4 Image Smoothing
6.4.1 Frequency Domain Smoothing
6.4.2 Spatial Domain Smoothing
6.4.3 Smoothing with Nonlinear Filters
6.5 Key Points
6.6 References and Further Reading
References
6.7 Exercises
6.8 Supplementary Exercises
7 Image Restoration and Reconstruction
7.1 Introduction and Overview
7.1.1 System Model
7.2 Noise Models
7.2.1 Noise Histograms
7.2.2 Periodic Noise
7.2.3 Estimation of Noise
7.3 Noise Removal Using Spatial Filters
7.3.1 Order Filters
7.3.2 Mean Filters
7.3.3 Adaptive Filters
7.4 The Degradation Function
7.4.1 The Spatial Domain – The Point Spread Function
7.4.2 The Frequency Domain – The Modulation/Optical Transfer Function
7.4.3 Estimation of the Degradation Function
7.5 Frequency Domain Restoration Filters
7.5.1 Inverse Filter
7.5.2 Wiener Filter
7.5.3 Constrained Least Squares Filter
7.5.4 Geometric Mean Filters
7.5.5 Adaptive Filtering
7.5.6 Bandpass, Bandreject and Notch Filters
7.5.7 Practical Considerations
7.6 Geometric Transforms
7.6.1 Spatial Transforms
7.6.2 Gray-Level Interpolation
7.6.3 The Geometric Restoration Procedure
7.6.4 Geometric Restoration with CVIPtools
7.7 Image Reconstruction
7.7.1 Reconstruction Using Backprojections
7.7.2 The Radon Transform
7.7.3 The Fourier-Slice Theorem and Direct Fourier Reconstruction
7.8 Key Points
7.9 References and Further Reading
References
7.10 Exercises
7.11 Supplementary Exercises
8 Image Compression
8.1 Introduction and Overview
8.1.1 Compression System Model
8.2 Lossless Compression Methods
8.2.1 Huffman Coding
8.2.2 Golomb-Rice Coding
8.2.3 Run-Length Coding
8.2.4 Lempel–Ziv–Welch Coding
8.2.5 Arithmetic Coding
8.3 Lossy Compression Methods
8.3.1 Gray-Level Run-Length Coding
8.3.2 Block Truncation Coding
8.3.3 Vector Quantization
8.3.4 Differential Predictive Coding
8.3.5 Model-Based and Fractal Compression
8.3.6 Transform Coding
8.3.7 Hybrid and Wavelet Methods
8.4 Key Points
8.5 References and Further Reading
References
8.6 Exercises
8.7 Supplementary Exercises
Index
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
Author
1 Digital Image Processing and Analysis
1.1 Overview
1.2 Image Processing and Human Vision
1.3 Digital Imaging Systems
1.4 Image Formation and Sensing
1.4.1 Visible Light Imaging
1.4.2 Imaging Outside the Visible Range of the EM Spectrum
1.4.3 Acoustic Imaging
1.4.4 Electron Imaging
1.4.5 Laser Imaging
1.4.6 Computer-Generated Images
1.5 Image Representation
1.5.1 Binary Images
1.5.2 Gray-Scale Images
1.5.3 Color Images
1.5.4 Multispectral and Multiband Images
1.5.5 Digital Image File Formats
1.6 Key Points
1.7 References and Further Reading
References
1.8 Exercises
2 Image Processing Development Tools
2.1 Introduction and Overview
2.2 CVIPtools Windows GUI
2.2.1 Image Viewer
2.2.2 Analysis Window
2.2.3 Enhancement Window
2.2.4 Restoration Window
2.2.5 Compression Window
2.2.6 Utilities Window
2.2.7 Help Window
2.2.8 Development Tools
2.3 CVIPlab for C/C++ Programming
2.3.1 Toolkit, Toolbox Libraries and Memory Management in C/C++
2.3.2 Image Data and File Structures
2.4 The MATLAB CVIP Toolbox
2.4.1 Help Files
2.4.2 M-Files
2.4.3 CVIPtools for MATLAB GUI
2.4.4 CVIPlab for MATLAB
2.4.5 Vectorization
2.4.6 Using CVIPlab for MATLAB
2.4.7 Adding a Function
2.4.8 A Sample Batch Processing M-File
2.4.9 VIPM File Format
2.5 References and Further Reading
References
2.6 Introductory Programming Exercises
2.7 Digital Image Processing and Human Vision Projects
3 Digital Image Processing and Visual Perception
3.1 Introduction
3.2 Image Analysis
3.2.1 Overview
3.2.2 System Model
3.3 Human Visual Perception
3.3.1 The Human Visual System
3.3.2 Spatial Frequency Resolution
3.3.3 Brightness Adaptation and Perception
3.3.4 Temporal Resolution
3.3.5 Perception and Illusion
3.4 Image Fidelity Criteria
3.4.1 Objective Fidelity Measures
3.4.2 Subjective Fidelity Measures
3.5 Key Points
3.6 References and Further Reading
References
3.7 Exercises
3.8 Supplementary Exercises
4 Discrete Transforms
4.1 Introduction and Overview
4.2 Fourier Transform
4.2.1 The One-Dimensional Discrete Fourier Transform
4.2.2 Two-Dimensional Discrete Fourier Transform
4.2.3 Fourier Transform Properties
4.2.3.1 Linearity
4.2.3.2 Convolution
4.2.3.3 Translation
4.2.3.4 Modulation
4.2.3.5 Rotation
4.2.3.6 Periodicity
4.2.3.7 Sampling and Aliasing
4.2.4 Displaying the Discrete Fourier Spectrum
4.3 Discrete Cosine Transform
4.4 Discrete Walsh–Hadamard Transform
4.5 Discrete Haar Transform
4.6 Principal Components Transform
4.7 Key Points
4.8 References and Further Reading
References
4.9 Exercises
4.10 Supplementary Exercises
5 Transform Filters, Spatial Filters and the Wavelet Transform
5.1 Introduction and Overview
5.2 Lowpass Filters
5.3 Highpass Filters
5.4 Bandpass, Bandreject and Notch Filters
5.5 Spatial Filtering via Convolution
5.5.1 Lowpass Filtering in the Spatial Domain
5.5.2 Highpass Filtering in the Spatial Domain
5.5.3 Bandpass and Bandreject Filtering in the Spatial Domain
5.6 Discrete Wavelet Transform
5.7 Key Points
5.8 References and Further Reading
References
5.9 Exercises
5.10 Supplementary Exercises
6 Image Enhancement
6.1 Introduction and Overview
6.2 Gray-Scale Modification
6.2.1 Mapping Equations
6.2.2 Histogram Modification
6.2.3 Adaptive Contrast Enhancement
6.2.4 Color
6.3 Image Sharpening
6.3.1 Highpass Filtering
6.3.2 High-Frequency Emphasis (HFE)
6.3.3 Directional Difference Filters
6.3.4 Homomorphic Filtering
6.3.5 Unsharp Masking
6.3.6 Edge Detector–Based Sharpening Algorithms
6.4 Image Smoothing
6.4.1 Frequency Domain Smoothing
6.4.2 Spatial Domain Smoothing
6.4.3 Smoothing with Nonlinear Filters
6.5 Key Points
6.6 References and Further Reading
References
6.7 Exercises
6.8 Supplementary Exercises
7 Image Restoration and Reconstruction
7.1 Introduction and Overview
7.1.1 System Model
7.2 Noise Models
7.2.1 Noise Histograms
7.2.2 Periodic Noise
7.2.3 Estimation of Noise
7.3 Noise Removal Using Spatial Filters
7.3.1 Order Filters
7.3.2 Mean Filters
7.3.3 Adaptive Filters
7.4 The Degradation Function
7.4.1 The Spatial Domain – The Point Spread Function
7.4.2 The Frequency Domain – The Modulation/Optical Transfer Function
7.4.3 Estimation of the Degradation Function
7.5 Frequency Domain Restoration Filters
7.5.1 Inverse Filter
7.5.2 Wiener Filter
7.5.3 Constrained Least Squares Filter
7.5.4 Geometric Mean Filters
7.5.5 Adaptive Filtering
7.5.6 Bandpass, Bandreject and Notch Filters
7.5.7 Practical Considerations
7.6 Geometric Transforms
7.6.1 Spatial Transforms
7.6.2 Gray-Level Interpolation
7.6.3 The Geometric Restoration Procedure
7.6.4 Geometric Restoration with CVIPtools
7.7 Image Reconstruction
7.7.1 Reconstruction Using Backprojections
7.7.2 The Radon Transform
7.7.3 The Fourier-Slice Theorem and Direct Fourier Reconstruction
7.8 Key Points
7.9 References and Further Reading
References
7.10 Exercises
7.11 Supplementary Exercises
8 Image Compression
8.1 Introduction and Overview
8.1.1 Compression System Model
8.2 Lossless Compression Methods
8.2.1 Huffman Coding
8.2.2 Golomb-Rice Coding
8.2.3 Run-Length Coding
8.2.4 Lempel–Ziv–Welch Coding
8.2.5 Arithmetic Coding
8.3 Lossy Compression Methods
8.3.1 Gray-Level Run-Length Coding
8.3.2 Block Truncation Coding
8.3.3 Vector Quantization
8.3.4 Differential Predictive Coding
8.3.5 Model-Based and Fractal Compression
8.3.6 Transform Coding
8.3.7 Hybrid and Wavelet Methods
8.4 Key Points
8.5 References and Further Reading
References
8.6 Exercises
8.7 Supplementary Exercises
Index
Alternative description
L'amélioration, la restauration et la compression d'images numériques se concentrent sur le développement d'applications d'imagerie basées sur la vision humaine. Les exemples incluent l'amélioration d'images médiocres, le développement d'algorithmes de compression avancés, l'imagerie d'effets spéciaux pour les films et la restauration d'images satellites déformées par des perturbations atmosphériques. Ce livre présente une approche technique unique de la pratique de l'imagerie numérique, qui commence par la présentation d'un modèle global pour aider à comprendre le processus global, suivi d'une décomposition et d'une explication de chaque sujet individuel. Les sujets sont présentés au fur et à mesure qu'ils deviennent nécessaires à la compréhension du modèle d'imagerie pratique étudié, ce qui motive le lecteur à apprendre et à utiliser les outils et les méthodes explorés.Le livre comprend des chapitres sur les systèmes et logiciels d'imagerie, le système visuel humain, les transformations d'images, le filtrage d'images, l'amélioration d'images, la restauration d'images et la compression d'images. De nombreux exemples, dont plus de 700 images en couleur, sont utilisés pour illustrer les concepts abordés. Les lecteurs peuvent explorer leur propre développement d'applications avec n'importe quel langage de programmation, y compris C/C++, MATLAB®, Python et R, et le logiciel est fourni pour les environnements Windows/C/C++ et MATLAB.Le livre peut être utilisé par la communauté universitaire pour l'enseignement et la recherche, avec plus de 1 000 diapositives PowerPoint et un manuel de solutions complet pour les plus de 230 problèmes inclus. Il peut également être utilisé pour l'auto-apprentissage par les personnes impliquées dans le développement d'applications, qu'il s'agisse d'ingénieurs, de scientifiques ou d'artistes. Cette nouvelle édition a été largement mise à jour et comprend de nombreux problèmes et exercices de programmation qui aideront le lecteur et l'étudiant à développer leurs compétences
Alternative description
Digital Image Enhancement, Restoration and Compression focuses on human vision-based imaging application development. Examples include making poor images look better, the development of advanced compression algorithms, special effects imaging for motion pictures and the restoration of satellite images distorted by atmospheric disturbance. This book presents a unique engineering approach to the practice of digital imaging, which starts by presenting a global model to help gain an understanding of the overall process, followed by a breakdown and explanation of each individual topic. Topics are presented as they become necessary for understanding the practical imaging model under study, which provides the reader with the motivation to learn about and use the tools and methods being explored. The book includes chapters on imaging systems and software, the human visual system, image transforms, image filtering, image enhancement, image restoration, and image compression. Numerous examples, including over 700 color images, are used to illustrate the concepts discussed. Readers can explore their own application development with any programming language, including C/C++, MATLAB, Python and R, and software is provided for both the Windows/C/C++ and MATLAB environments. The book can be used by the academic community in teaching and research, with over 1,000 PowerPoint slides and a complete solutions manual to the over 230 included problems. It can also be used for self-study by those involved with application development, whether they are engineers, scientists or artists. The new edition has been extensively updated and includes numerous problems and programming exercises that will help the reader and student develop their skills
date open sourced
2024-02-22
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
If you donate this month, you get double the number of fast downloads.
- Option #1: Fast Partner Server #1 (recommended) (open in viewer) (no redirect) (short filename) (no browser verification or waitlists)
- Option #2: Fast Partner Server #2 (open in viewer) (no redirect) (short filename)
- Option #3: Fast Partner Server #3 (open in viewer) (no redirect) (short filename)
- Option #4: Fast Partner Server #4 (open in viewer) (no redirect) (short filename)
- Option #5: Fast Partner Server #5 (open in viewer) (no redirect) (short filename)
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Option #1: Slow Partner Server #1 (slightly faster but with waitlist)
- Option #2: Slow Partner Server #2 (slightly faster but with waitlist)
- Option #3: Slow Partner Server #3 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
External downloads
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.