English [en], .pdf, nexusstc, 2.9MB, 🤨 Other, nexusstc/Myasthenia gravis—Pathophysiology, diagnosis, and treatment/c1143649c19e25f731be4ecfef1e7eed.pdf
Myasthenia gravis—Pathophysiology, diagnosis, and treatment 🔍
Elsevier, Handbook of Clinical Neurology, 2024
Martijn R. Tannemaat; Maartje G. Huijbers; Jan J.G.M. Verschuuren 🔍
description
Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males.
Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes.
Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test.
Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.
Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes.
Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test.
Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.
Alternative title
Paraneoplastic Neurologic Disorders (Volume 200) (Handbook of Clinical Neurology, Volume 200)
Alternative author
Bruno Giometto; Sean J. Pittock
Alternative publisher
Academic Press, Incorporated
Alternative publisher
Morgan Kaufmann Publishers
Alternative publisher
Brooks/Cole
Alternative edition
United States, United States of America
Alternative edition
1, PT, 2024
metadata comments
{"container_title":"Handbook of Clinical Neurology","content":{"parsed_at":1713992266,"parser":{"name":"textparser","version":"0.1.129"},"source":{"name":"grobid","version":"0.8.0"}},"first_page":283,"issns":["0072-9752"],"last_page":305,"parent_isbns":["0128239123","9780128239124"],"publisher":"Elsevier"}
metadata comments
Referenced by: doi:10.21037/atm.2019.06.65 doi:10.1007/s40259-020-00443-w doi:10.1111/ene.14547 doi:10.1002/mus.24904 doi:10.1080/14656566.2019.1682548 doi:10.1212/wnl.0b013e31821e5505 doi:10.1016/j.nmd.2006.05.006 doi:10.1002/mus.23330 doi:10.1002/mus.24769 doi:10.1016/j.nmd.2021.05.002 doi:10.1002/mus.25374 doi:10.1111/j.1749-6632.2012.06767.x doi:10.1212/wnl.0000000000011108 doi:10.1001/jamaneurol.2016.0113 doi:10.3390/ijms19020490 doi:10.1038/nri.2017.1 doi:10.3390/jcm10174031 doi:10.3390/jcm5120107 doi:10.1212/wnl.92.15_supplement.p5.2-079 doi:10.1212/wnl.0000000000008903 doi:10.1111/j.1600-0404.1991.tb04899.x doi:10.3233/jnd-190407 doi:10.1212/wnl.0000000000009306 doi:10.1002/mus.23626 doi:10.1001/jama.1930.27120410003009c doi:10.1007/s11910-018-0852-4 doi:10.1159/000116785 doi:10.1196/annals.1405.012 doi:10.1212/wnl.0000000000002466 doi:10.1111/nyas.13518 doi:10.1111/bcp.14241 doi:10.1212/wnl.0000000000000478 doi:10.1007/s00415-019-09631-3 doi:10.1212/wnl.0000000000010619 doi:10.1038/s41572-019-0079-y doi:10.1001/archneur.1981.00510080093017 doi:10.1097/01376517-199806000-00007 doi:10.1080/08916934.2016.1214823 doi:10.1212/wnl.96.15_supplement.2157 doi:10.1016/j.nmd.2016.09.020 doi:10.1212/wnl.0000000000003547 doi:10.1111/nyas.13471 doi:10.1186/1471-2377-11-97 doi:10.1212/wnl.0000000000004341 doi:10.1212/wnl.0000000000005323 doi:10.1002/ana.22312 doi:10.1038/85520 doi:10.1111/ane.12261 doi:10.1111/nyas.13522 doi:10.1016/s1474-4422(17)30369-1 doi:10.1016/s1474-4422(21)00159-9 doi:10.1073/pnas.1313944110 doi:10.1016/j.jneuroim.2015.12.016 doi:10.1212/nxi.0000000000000547 doi:10.1002/mus.24438 doi:10.3389/fneur.2020.00868 doi:10.1001/archneurol.2012.437 doi:10.1097/cnd.0b013e3181660807 doi:10.1200/jco.2013.51.1683 doi:10.1016/j.nmd.2017.03.007 doi:10.3389/fneur.2022.886625 doi:10.1159/000502818 doi:10.1212/wnl.0b013e318237f660 doi:10.1136/bmjopen-2018-024523 doi:10.1371/journal.pone.0080695 doi:10.1016/j.jaut.2016.11.005 doi:10.1002/mus.26999 doi:10.1007/s00415-018-9056-8 doi:10.1111/ahg.12262 doi:10.1055/s-0036-1584322 doi:10.1111/j.1749-6632.1976.tb47691.x doi:10.1212/wnl.26.11.1054 doi:10.1002/cpt.1276 doi:10.1016/j.nmd.2016.11.009 doi:10.1016/s0003-9993(23)00011-4 doi:10.1007/s00415-020-10264-0 doi:10.1124/jpet.107.120709 doi:10.3389/fimmu.2020.00613 doi:10.1007/s00281-021-00842-3 doi:10.1007/s11910-016-0652-7 doi:10.1016/j.expneurol.2017.08.006 doi:10.1002/mus.26447 doi:10.4103/0301-4738.145987 doi:10.1212/wnl.0000000000011124 doi:10.1136/jnnp.2006.102517 doi:10.1056/nejmoa1311084 doi:10.1111/j.1468-1331.2007.01870.x doi:10.1097/cnd.0000000000000119 doi:10.1212/wnl.50.6.1778 doi:10.1038/s41598-022-13042-2 doi:10.1002/ana.410150316 doi:10.1212/wnl.0000000000002795 doi:10.1016/j.jaci.2020.07.015 doi:10.1126/science.180.4088.871 doi:10.3390/cells11071218 doi:10.1007/s00415-011-6194-7 doi:10.12688/f1000research.8206.1 doi:10.1371/journal.pone.0269368 doi:10.2741/4532 doi:10.1016/j.cnp.2020.01.002 doi:10.1016/s1474-4422(21)00297-0 doi:10.1038/nrendo.2013.183 doi:10.1002/mus.25552 doi:10.1016/s0140-6736(86)91983-5 doi:10.1001/jamaneurol.2014.4103 doi:10.1111/ajt.14872 doi:10.1002/mus.26985 doi:10.3389/fneur.2020.00660 doi:10.1038/nrc2355 doi:10.1016/j.nmd.2020.06.010 doi:10.1016/j.nmd.2021.04.002 doi:10.3389/fimmu.2020.603237 doi:10.1212/wnl.0000000000002790 doi:10.1016/j.clinph.2019.04.005 doi:10.1200/edbk_238691 doi:10.1172/jci66039 doi:10.1371/journal.pone.0195909 doi:10.1016/j.nmd.2018.11.008 doi:10.1002/mus.25597 doi:10.1016/j.nmd.2019.12.003 doi:10.1212/wnl.39.10.1359 doi:10.3109/08916939109007633 doi:10.1212/wnl.0000000000002383 doi:10.1126/science.1144603 doi:10.1016/s0006-2952(99)00152-5 doi:10.1016/j.nmd.2019.11.008 doi:10.1073/pnas.2020635118 doi:10.3109/08916931003602130 doi:10.1111/nyas.13543 doi:10.1016/s1474-4422(21)00463-4 doi:10.1002/14651858.cd010028.pub2 doi:10.21037/sci.2018.11.05 doi:10.1056/nejm197201062860104 doi:10.1038/s41423-020-00555-x doi:10.1002/mus.25493 doi:10.1097/md.0000000000011510 doi:10.1056/nejmoa1602489 doi:10.1016/j.jns.2021.118074 doi:10.1002/mus.24054 doi:10.1002/mus.26745 doi:10.3390/ijms22020888 doi:10.1056/nejmoa1901747 doi:10.1002/mus.22301 doi:10.1016/j.neuroscience.2018.01.015 doi:10.1007/s40120-022-00345-9 doi:10.1111/cts.13019 doi:10.1074/jbc.m111.279307 doi:10.1001/archneurol.2011.2393 doi:10.1016/j.jocn.2021.03.015 doi:10.3389/fneur.2021.736190 doi:10.1212/01.wnl.0000256698.69121.45 doi:10.1016/j.autrev.2019.102366
Alternative description
Paraneoplastic Neurological Disorders, Volume 200 covers new, recent descriptions of autoantibodies against neuronal cell surface antigens (only partly associated with paraneoplastic disorders) and the introduction of new immuno-oncological drugs that can contribute to diseases that are pathogenetically indistinguishable from paraneoplastic syndromes. Besides investigating the pathogenetic mechanisms of these disorders, this book also explores what the introduction of new drugs used in immune checkpoint inhibitor cancer therapy are teaching us in terms of immunopathogenesis. Following sections present individual syndromes (phenotypical clinical manifestations) of the CNS, PNS, NMJ, and muscle. Finally, the book investigates the role of antibody markers that differentiate by cytoplasmic, nuclear, and neuronal cell surface reactivities. Side effects of the new immuno-oncological drugs increasingly used in cancer therapy are also covered.
- Option #1: Nexus/STC (Nexus/STC files can be unreliable to download)
- Option #2: IPFS
- Option #3: Sci-Hub: 10.1016/b978-0-12-823912-4.00026-8 (associated DOI might not be available in Sci-Hub)
- Bulk torrents not yet available for this file. If you have this file, help out by uploading.
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.