English [en], .pdf, 🚀/lgli/lgrs/nexusstc/zlib, 74.7MB, 📘 Book (non-fiction), nexusstc/Introduction to Electric Circuits/81d3a925d369151a3faf5c7fd7782663.pdf
Introduction to Electric Circuits 10th Edition 🔍
Oxford University Press, USA, 10th ed, Don Mills, Ontario, ©2019
Herbert W. Jackson, Dale Temple, Brian Kelly, Karen Craigs, Lauren Fuentes, Brian E. Kelly 🔍
description
Cover
Introduction to Electric Circuits
Contents
From the Publisher
From the Preface to the First Edition (1959)
From the Authors of the Tenth Edition
PART I: The Basic Electric Circuit
1: Introduction
Key Terms
Learning Outcomes
1-1 Circuit Diagrams
1-2 The International System of Units
1-3 Calculators for Circuit Theory
1-4 Numerical Accuracy
1-5 Scientific Notation
1-6 SI Unit Prefixes
1-7 Conversion of Units
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
2: Current and Voltage
Key Terms
Learning Outcomes
2-1 The Nature of Charge
2-2 Free Electrons in Metals
2-3 Electric Current
2-4 The Coulomb
2-5 The Ampere
2-6 Potential Difference
2-7 The Volt
2-8 EMF, Potential Difference, and Voltage
2-9 Conventional Current and Electron Flow
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
3: Conductors, Insulators, and Semiconductors
Key Terms
Learning Outcomes
3-1 Conductors
3-2 Electrolytic Conduction
3-3 Insulators
3-4 Insulator Breakdown
3-5 Semiconductors
Summary
Review Questions
Integrate the Concepts
Practice Quiz
4: Cells, Batteries, and Other Voltage Sources
Key Terms
Learning Outcomes
4-1 Basic Terminology
4-2 Simple Primary Cell
4-3 Carbon-Zinc and Alkaline Cells
4-4 Other Commercial Primary Cells
4-5 Secondary Cells
4-6 Capacity of Cells and Batteries
4-7 Fuel Cells
4-8 Other Voltage Sources
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
5: Resistance and Ohm’s Law
Key Terms
Learning Outcomes
5-1 Ohm’s Law
5-2 The Nature of Resistance
5-3 Factors Governing Resistance
5-4 Resistivity
5-5 Circular Mils
5-6 American Wire Gauge
5-7 Effect of Temperature on Resistance
5-8 Temperature Coefficient of Resistance
5-9 Linear Resistors
5-10 Nonlinear Resistors
5-11 Resistor Colour Code
5-12 Variable Resistors
5-13 Voltage-Current Characteristics
5-14 Applying Ohm’s Law
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
6: Work and Power
Key Terms
Learning Outcomes
6-1 Energy and Work
6-2 Power
6-3 Efficiency
6-4 The Kilowatt Hour
6-5 Relationships Among Basic Electric Units
6-6 Heating Effect of Current
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART II: Resistance Networks
7: Series and Parallel Circuits
Key Terms
Learning Outcomes
7-1 Resistors in Series
7-2 Voltage Drops in Series Circuits
7-3 Double-Subscript Notation
7-4 Kirchhoff’s Voltage Law
7-5 Characteristics of Series Circuits
7-6 Internal Resistance
7-7 Cells in Series
7-8 Maximum Power Transfer
7-9 Resistors in Parallel
7-10 Kirchhoff’s Current Law
7-11 Conductance and Conductivity
7-12 Characteristics of Parallel Circuits
7-13 Cells in Parallel
7-14 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
8: Series-Parallel Circuits
Key Terms
Learning Outcomes
8-1 Series-Parallel Resistors
8-2 Equivalent-Circuit Method
8-3 Kirchhoff’s Laws Method
8-4 Voltage-Divider Principle
8-5 Voltage Dividers
8-6 Current-Divider Principle
8-7 Cells in Series-Parallel
8-8 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
9: Resistance Networks
Key Terms
Learning Outcomes
9-1 Network Equations from Kirchhoff’s Laws
9-2 Constant-Voltage Sources
9-3 Constant-Current Sources
9-4 Source Conversion
9-5 Kirchhoff’s Voltage-Law Equations: Loop Procedure
9-6 Networks with More Than One Voltage Source
9-7 Loop Equations in Multisource Networks
9-8 Mesh Analysis
9-9 Kirchhoff’s Current-Law Equations
9-10 Nodal Analysis
9-11 The Superposition Theorem
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
10: Equivalent-Circuit Theorems
Key Terms
Learning Outcomes
10-1 Thévenin’s Theorem
10-2 Norton’s Theorem
10-3 Dependent Sources
10-4 Delta-Wye Transformation
10-5 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
11: Electrical Measurement
Key Terms
Learning Outcomes
11-1 Moving-Coil Meters
11-2 The Ammeter
11-3 The Voltmeter
11-4 Voltmeter Loading Effect
11-5 Resistance Measurement
11-6 The Electrodynamometer Movement
11-7 Multimeters
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART III: Capacitance and Inductance
12: Capacitance
Key Terms
Learning Outcomes
12-1 Electric Fields
12-2 Dielectrics
12-3 Capacitance
12-4 Capacitors
12-5 Factors Governing Capacitance
12-6 Dielectric Constant
12-7 Capacitors in Parallel
12-8 Capacitors in Series
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
13: Capacitance in dc Circuits
Key Terms
Learning Outcomes
13-1 Charging a Capacitor
13-2 Rate of Change of Voltage
13-3 Time Constant
13-4 Graphical Solution for Capacitor Voltage
13-5 Discharging a Capacitor
13-6 Algebraic Solution for Capacitor Voltage
13-7 Transient Response
13-8 Energy Stored by a Capacitor
13-9 Characteristics of Capacitive DC Circuits
13-10 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
14: Magnetism
Key Terms
Learning Outcomes
14-1 Magnetic Fields
14-2 Magnetic Field around a Current-Carrying Conductor
14-3 Magnetic Flux
14-4 Magnetomotive Force
14-5 Reluctance
14-6 Permeance and Permeability
14-7 Magnetic Flux Density
14-8 Magnetic Field Strength
14-9 Diamagnetic, Paramagnetic, and Ferromagnetic Materials
14-10 Permanent Magnets
14-11 Magnetization Curves
14-12 Permeability from the BH Curve
14-13 Hysteresis
14-14 Eddy Current
14-15 Magnetic Shielding
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
15: Magnetic Circuits
Key Terms
Learning Outcomes
15-1 Practical Magnetic Circuits
15-2 Long Air-Core Coils
15-3 Toroidal Coils
15-4 Linear Magnetic Circuits
15-5 Nonlinear Magnetic Circuits
15-6 Leakage Flux
15-7 Series Magnetic Circuits
15-8 Air Gaps
15-9 Parallel Magnetic Circuits
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
16: Inductance
Key Terms
Learning Outcomes
16-1 Electromagnetic Induction
16-2 Faraday’s Law
16-3 Lenz’s Law
16-4 Self-Induction
16-5 Self-Inductance
16-6 Factors Governing Inductance
16-7 Inductors in Series
16-8 Inductors in Parallel
16-9 The DC Generator
16-10 Simple DC Generator
16-11 EMF Equation
16-12 The DC Motor
16-13 Speed and Torque of a DC Motor
16-14 Types of DC Motors
16-15 Speed Characteristics of DC Motors
16-16 Torque Characteristics of DC Motors
16-17 Permanent Magnet and Brushless DC Motors
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
17: Inductance in dc Circuits
Key Terms
Learning Outcomes
17-1 Current in an Ideal Inductor
17-2 Rise of Current in a Practical Inductor
17-3 Time Constant
17-4 Graphical Solution for Inductor Current
17-5 Algebraic Solution for Inductor Current
17-6 Energy Stored by an Inductor
17-7 Fall of Current in an Inductive Circuit
17-8 Algebraic Solution for Discharge Current
17-9 Transient Response
17-10 Characteristics of Inductive dc Circuits
17-11 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART IV: Alternating Current
18: Alternating Current
Key Terms
Learning Outcomes
18-1 A Simple Generator
18-2 The Nature of the Induced Voltage
18-3 The Sine Wave
18-4 Peak Value of a Sine Wave
18-5 Instantaneous Value of a Sine Wave
18-6 The Radian
18-7 Instantaneous Current in a Resistor
18-8 Instantaneous Power in a Resistor
18-9 Periodic Waves
18-10 Average Value of a Periodic Wave
18-11 rms Value of a Sine Wave
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
19: Reactance
Key Terms
Learning Outcomes
19-1 Instantaneous Current in an Ideal Inductor
19-2 Inductive Reactance
19-3 Factors Governing Inductive Reactance
19-4 Instantaneous Current in a Capacitor
19-5 Capacitive Reactance
19-6 Factors Governing Capacitive Reactance
19-7 Resistance, Inductive Reactance, and Capacitive Reactance
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
20: Phasors
Key Terms
Learning Outcomes
20-1 Addition of Sine Waves
20-2 Addition of Instantaneous Values
20-3 Representing a Sine Wave by a Phasor Diagram
20-4 Letter Symbols for Phasor Quantities
20-5 Phasor Addition by Geometrical Construction
20-6 Addition of Perpendicular Phasors
20-7 Expressing Phasors with Complex Numbers
20-8 Phasor Addition Using Rectangular Coordinates
20-9 Subtraction of Phasor Quantities
20-10 Multiplication and Division of Phasor Quantities
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
21: Impedance
Key Terms
Learning Outcomes
21-1 Resistance and Inductance in Series
21-2 Impedance
21-3 Practical Inductors
21-4 Resistance and Capacitance in Series
21-5 Resistance, Inductance, and Capacitance in Series
21-6 Resistance, Inductance, and Capacitance in Parallel
21-7 Conductance, Susceptance, and Admittance
21-8 Impedance and Admittance
21-9 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
22: Power in Alternating-Current Circuits
Key Terms
Learning Outcomes
22-1 Power in a Resistor
22-2 Power in an Ideal Inductor
22-3 Power in a Capacitor
22-4 Power in a Circuit Containing Resistance and Reactance
22-5 The Power Triangle
22-6 Power Factor
22-7 Power-Factor Correction
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART V: Impedance Networks
23: Series and Parallel Impedances
Key Terms
Learning Outcomes
23-1 Resistance and Impedance
23-2 Impedances in Series
23-3 Impedances in Parallel
23-4 Series-Parallel Impedances
23-5 Source Conversion
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
24: Impedance Networks
Key Terms
Learning Outcomes
24-1 Loop Equations
24-2 Mesh Equations
24-3 Superposition Theorem
24-4 Thévenin’s Theorem
24-5 Norton’s Theorem
24-6 Nodal Analysis
24-7 Delta-Wye Transformation
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
25: Resonance
Key Terms
Learning Outcomes
25-1 Effect of Varying Frequency in a Series rlc Circuit
25-2 Series Resonance
25-3 Quality Factor
25-4 Resonant Rise of Voltage
25-5 Selectivity
25-6 Ideal Parallel-Resonant Circuits
25-7 Practical Parallel-Resonant Circuits
25-8 Selectivity of Parallel-Resonant Circuits
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
26: Passive Filters
Key Terms
Learning Outcomes
26-1 Filters
26-2 Frequency Response Graphs
26-3 RC Low-Pass Filters
26-4 RL Low-Pass Filters
26-5 RC High-Pass Filters
26-6 RL High-Pass Filters
26-7 Band-Pass Filters
26-8 Band-Stop Filters
26-9 Practical Application of Filters
26-10 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
27: Transformers
Key Terms
Learning Outcomes
27-1 Transformer Action
27-2 Transformation Ratio
27-3 Impedance Transformation
27-4 Leakage Reactance
27-5 Open-Circuit and Short-Circuit Tests
27-6 Transformer Efficiency
27-7 Effect of Loading a Transformer
27-8 Autotransformers
27-9 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
28: Coupled Circuits
Key Terms
Learning Outcomes
28-1 Determining Coupling Network Parameters
28-2 Open-Circuit Impedance Parameters
28-3 Short-Circuit Admittance Parameters
28-4 Hybrid Parameters
28-5 Air-Core Transformers
28-6 Mutual Inductance
28-7 Coupled Impedance
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
29: Three-Phase Systems
Key Terms
Learning Outcomes
29-1 Advantages of Polyphase Systems
29-2 Generation of Three-Phase Voltages
29-3 Double-Subscript Notation
29-4 Four-Wire Wye-Connected System
29-5 Delta-Connected Systems
29-6 Wye-Delta System
29-7 Power in a Balanced Three-Phase System
29-8 Phase Sequence
29-9 Unbalanced Three-Wire Wye Loads
29-10 Power in an Unbalanced Three-Phase System
29-11 The AC Generator
29-12 Three-Phase Induction Motor
29-13 Three-Phase Synchronous Motor
29-14 Single-Phase Motors
29-15 The 30° Difference between Delta-Wye Configurations
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
30: Harmonics
Key Terms
Learning Outcomes
30-1 Nonsinusoidal Waves
30-2 Fourier Series
30-3 Addition of Harmonically Related Sine Waves
30-4 Generation of Harmonics
30-5 Harmonics in an Amplifier
30-6 Harmonics in an Iron-Core Transformer
30-7 rms Value of a Nonsinusoidal Wave
30-8 Square Waves and Sawtooth Waves
30-9 Nonsinusoidal Waves in Linear Impedance Networks
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
Appendices
1 Determinants
2 Calculus Derivations
2-1 Maxium Power-Transfer Theorem
2-2 Instantaneous Voltage in a cr Circuit
2-3 Energy Stored by a Capacitor
2-4 Instantaneous Current in an LR Circuit
2-5 Energy Stored by an Inductor
2-6 rms and Average Values of a Sine Wave
2-7 Inductive Reactance
2-8 Capacitive Reactance
2-9 General Transformer Equation
2-10 Maximum Transformer Efficiency
3 Multisim Schematic Capture and Simulation
Answers to Selected Problems
Glossary
Index
Introduction to Electric Circuits
Contents
From the Publisher
From the Preface to the First Edition (1959)
From the Authors of the Tenth Edition
PART I: The Basic Electric Circuit
1: Introduction
Key Terms
Learning Outcomes
1-1 Circuit Diagrams
1-2 The International System of Units
1-3 Calculators for Circuit Theory
1-4 Numerical Accuracy
1-5 Scientific Notation
1-6 SI Unit Prefixes
1-7 Conversion of Units
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
2: Current and Voltage
Key Terms
Learning Outcomes
2-1 The Nature of Charge
2-2 Free Electrons in Metals
2-3 Electric Current
2-4 The Coulomb
2-5 The Ampere
2-6 Potential Difference
2-7 The Volt
2-8 EMF, Potential Difference, and Voltage
2-9 Conventional Current and Electron Flow
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
3: Conductors, Insulators, and Semiconductors
Key Terms
Learning Outcomes
3-1 Conductors
3-2 Electrolytic Conduction
3-3 Insulators
3-4 Insulator Breakdown
3-5 Semiconductors
Summary
Review Questions
Integrate the Concepts
Practice Quiz
4: Cells, Batteries, and Other Voltage Sources
Key Terms
Learning Outcomes
4-1 Basic Terminology
4-2 Simple Primary Cell
4-3 Carbon-Zinc and Alkaline Cells
4-4 Other Commercial Primary Cells
4-5 Secondary Cells
4-6 Capacity of Cells and Batteries
4-7 Fuel Cells
4-8 Other Voltage Sources
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
5: Resistance and Ohm’s Law
Key Terms
Learning Outcomes
5-1 Ohm’s Law
5-2 The Nature of Resistance
5-3 Factors Governing Resistance
5-4 Resistivity
5-5 Circular Mils
5-6 American Wire Gauge
5-7 Effect of Temperature on Resistance
5-8 Temperature Coefficient of Resistance
5-9 Linear Resistors
5-10 Nonlinear Resistors
5-11 Resistor Colour Code
5-12 Variable Resistors
5-13 Voltage-Current Characteristics
5-14 Applying Ohm’s Law
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
6: Work and Power
Key Terms
Learning Outcomes
6-1 Energy and Work
6-2 Power
6-3 Efficiency
6-4 The Kilowatt Hour
6-5 Relationships Among Basic Electric Units
6-6 Heating Effect of Current
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART II: Resistance Networks
7: Series and Parallel Circuits
Key Terms
Learning Outcomes
7-1 Resistors in Series
7-2 Voltage Drops in Series Circuits
7-3 Double-Subscript Notation
7-4 Kirchhoff’s Voltage Law
7-5 Characteristics of Series Circuits
7-6 Internal Resistance
7-7 Cells in Series
7-8 Maximum Power Transfer
7-9 Resistors in Parallel
7-10 Kirchhoff’s Current Law
7-11 Conductance and Conductivity
7-12 Characteristics of Parallel Circuits
7-13 Cells in Parallel
7-14 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
8: Series-Parallel Circuits
Key Terms
Learning Outcomes
8-1 Series-Parallel Resistors
8-2 Equivalent-Circuit Method
8-3 Kirchhoff’s Laws Method
8-4 Voltage-Divider Principle
8-5 Voltage Dividers
8-6 Current-Divider Principle
8-7 Cells in Series-Parallel
8-8 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
9: Resistance Networks
Key Terms
Learning Outcomes
9-1 Network Equations from Kirchhoff’s Laws
9-2 Constant-Voltage Sources
9-3 Constant-Current Sources
9-4 Source Conversion
9-5 Kirchhoff’s Voltage-Law Equations: Loop Procedure
9-6 Networks with More Than One Voltage Source
9-7 Loop Equations in Multisource Networks
9-8 Mesh Analysis
9-9 Kirchhoff’s Current-Law Equations
9-10 Nodal Analysis
9-11 The Superposition Theorem
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
10: Equivalent-Circuit Theorems
Key Terms
Learning Outcomes
10-1 Thévenin’s Theorem
10-2 Norton’s Theorem
10-3 Dependent Sources
10-4 Delta-Wye Transformation
10-5 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
11: Electrical Measurement
Key Terms
Learning Outcomes
11-1 Moving-Coil Meters
11-2 The Ammeter
11-3 The Voltmeter
11-4 Voltmeter Loading Effect
11-5 Resistance Measurement
11-6 The Electrodynamometer Movement
11-7 Multimeters
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART III: Capacitance and Inductance
12: Capacitance
Key Terms
Learning Outcomes
12-1 Electric Fields
12-2 Dielectrics
12-3 Capacitance
12-4 Capacitors
12-5 Factors Governing Capacitance
12-6 Dielectric Constant
12-7 Capacitors in Parallel
12-8 Capacitors in Series
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
13: Capacitance in dc Circuits
Key Terms
Learning Outcomes
13-1 Charging a Capacitor
13-2 Rate of Change of Voltage
13-3 Time Constant
13-4 Graphical Solution for Capacitor Voltage
13-5 Discharging a Capacitor
13-6 Algebraic Solution for Capacitor Voltage
13-7 Transient Response
13-8 Energy Stored by a Capacitor
13-9 Characteristics of Capacitive DC Circuits
13-10 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
14: Magnetism
Key Terms
Learning Outcomes
14-1 Magnetic Fields
14-2 Magnetic Field around a Current-Carrying Conductor
14-3 Magnetic Flux
14-4 Magnetomotive Force
14-5 Reluctance
14-6 Permeance and Permeability
14-7 Magnetic Flux Density
14-8 Magnetic Field Strength
14-9 Diamagnetic, Paramagnetic, and Ferromagnetic Materials
14-10 Permanent Magnets
14-11 Magnetization Curves
14-12 Permeability from the BH Curve
14-13 Hysteresis
14-14 Eddy Current
14-15 Magnetic Shielding
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
15: Magnetic Circuits
Key Terms
Learning Outcomes
15-1 Practical Magnetic Circuits
15-2 Long Air-Core Coils
15-3 Toroidal Coils
15-4 Linear Magnetic Circuits
15-5 Nonlinear Magnetic Circuits
15-6 Leakage Flux
15-7 Series Magnetic Circuits
15-8 Air Gaps
15-9 Parallel Magnetic Circuits
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
16: Inductance
Key Terms
Learning Outcomes
16-1 Electromagnetic Induction
16-2 Faraday’s Law
16-3 Lenz’s Law
16-4 Self-Induction
16-5 Self-Inductance
16-6 Factors Governing Inductance
16-7 Inductors in Series
16-8 Inductors in Parallel
16-9 The DC Generator
16-10 Simple DC Generator
16-11 EMF Equation
16-12 The DC Motor
16-13 Speed and Torque of a DC Motor
16-14 Types of DC Motors
16-15 Speed Characteristics of DC Motors
16-16 Torque Characteristics of DC Motors
16-17 Permanent Magnet and Brushless DC Motors
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
17: Inductance in dc Circuits
Key Terms
Learning Outcomes
17-1 Current in an Ideal Inductor
17-2 Rise of Current in a Practical Inductor
17-3 Time Constant
17-4 Graphical Solution for Inductor Current
17-5 Algebraic Solution for Inductor Current
17-6 Energy Stored by an Inductor
17-7 Fall of Current in an Inductive Circuit
17-8 Algebraic Solution for Discharge Current
17-9 Transient Response
17-10 Characteristics of Inductive dc Circuits
17-11 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART IV: Alternating Current
18: Alternating Current
Key Terms
Learning Outcomes
18-1 A Simple Generator
18-2 The Nature of the Induced Voltage
18-3 The Sine Wave
18-4 Peak Value of a Sine Wave
18-5 Instantaneous Value of a Sine Wave
18-6 The Radian
18-7 Instantaneous Current in a Resistor
18-8 Instantaneous Power in a Resistor
18-9 Periodic Waves
18-10 Average Value of a Periodic Wave
18-11 rms Value of a Sine Wave
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
19: Reactance
Key Terms
Learning Outcomes
19-1 Instantaneous Current in an Ideal Inductor
19-2 Inductive Reactance
19-3 Factors Governing Inductive Reactance
19-4 Instantaneous Current in a Capacitor
19-5 Capacitive Reactance
19-6 Factors Governing Capacitive Reactance
19-7 Resistance, Inductive Reactance, and Capacitive Reactance
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
20: Phasors
Key Terms
Learning Outcomes
20-1 Addition of Sine Waves
20-2 Addition of Instantaneous Values
20-3 Representing a Sine Wave by a Phasor Diagram
20-4 Letter Symbols for Phasor Quantities
20-5 Phasor Addition by Geometrical Construction
20-6 Addition of Perpendicular Phasors
20-7 Expressing Phasors with Complex Numbers
20-8 Phasor Addition Using Rectangular Coordinates
20-9 Subtraction of Phasor Quantities
20-10 Multiplication and Division of Phasor Quantities
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
21: Impedance
Key Terms
Learning Outcomes
21-1 Resistance and Inductance in Series
21-2 Impedance
21-3 Practical Inductors
21-4 Resistance and Capacitance in Series
21-5 Resistance, Inductance, and Capacitance in Series
21-6 Resistance, Inductance, and Capacitance in Parallel
21-7 Conductance, Susceptance, and Admittance
21-8 Impedance and Admittance
21-9 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
22: Power in Alternating-Current Circuits
Key Terms
Learning Outcomes
22-1 Power in a Resistor
22-2 Power in an Ideal Inductor
22-3 Power in a Capacitor
22-4 Power in a Circuit Containing Resistance and Reactance
22-5 The Power Triangle
22-6 Power Factor
22-7 Power-Factor Correction
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
PART V: Impedance Networks
23: Series and Parallel Impedances
Key Terms
Learning Outcomes
23-1 Resistance and Impedance
23-2 Impedances in Series
23-3 Impedances in Parallel
23-4 Series-Parallel Impedances
23-5 Source Conversion
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
24: Impedance Networks
Key Terms
Learning Outcomes
24-1 Loop Equations
24-2 Mesh Equations
24-3 Superposition Theorem
24-4 Thévenin’s Theorem
24-5 Norton’s Theorem
24-6 Nodal Analysis
24-7 Delta-Wye Transformation
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
25: Resonance
Key Terms
Learning Outcomes
25-1 Effect of Varying Frequency in a Series rlc Circuit
25-2 Series Resonance
25-3 Quality Factor
25-4 Resonant Rise of Voltage
25-5 Selectivity
25-6 Ideal Parallel-Resonant Circuits
25-7 Practical Parallel-Resonant Circuits
25-8 Selectivity of Parallel-Resonant Circuits
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
26: Passive Filters
Key Terms
Learning Outcomes
26-1 Filters
26-2 Frequency Response Graphs
26-3 RC Low-Pass Filters
26-4 RL Low-Pass Filters
26-5 RC High-Pass Filters
26-6 RL High-Pass Filters
26-7 Band-Pass Filters
26-8 Band-Stop Filters
26-9 Practical Application of Filters
26-10 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
27: Transformers
Key Terms
Learning Outcomes
27-1 Transformer Action
27-2 Transformation Ratio
27-3 Impedance Transformation
27-4 Leakage Reactance
27-5 Open-Circuit and Short-Circuit Tests
27-6 Transformer Efficiency
27-7 Effect of Loading a Transformer
27-8 Autotransformers
27-9 Troubleshooting
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
28: Coupled Circuits
Key Terms
Learning Outcomes
28-1 Determining Coupling Network Parameters
28-2 Open-Circuit Impedance Parameters
28-3 Short-Circuit Admittance Parameters
28-4 Hybrid Parameters
28-5 Air-Core Transformers
28-6 Mutual Inductance
28-7 Coupled Impedance
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
29: Three-Phase Systems
Key Terms
Learning Outcomes
29-1 Advantages of Polyphase Systems
29-2 Generation of Three-Phase Voltages
29-3 Double-Subscript Notation
29-4 Four-Wire Wye-Connected System
29-5 Delta-Connected Systems
29-6 Wye-Delta System
29-7 Power in a Balanced Three-Phase System
29-8 Phase Sequence
29-9 Unbalanced Three-Wire Wye Loads
29-10 Power in an Unbalanced Three-Phase System
29-11 The AC Generator
29-12 Three-Phase Induction Motor
29-13 Three-Phase Synchronous Motor
29-14 Single-Phase Motors
29-15 The 30° Difference between Delta-Wye Configurations
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
30: Harmonics
Key Terms
Learning Outcomes
30-1 Nonsinusoidal Waves
30-2 Fourier Series
30-3 Addition of Harmonically Related Sine Waves
30-4 Generation of Harmonics
30-5 Harmonics in an Amplifier
30-6 Harmonics in an Iron-Core Transformer
30-7 rms Value of a Nonsinusoidal Wave
30-8 Square Waves and Sawtooth Waves
30-9 Nonsinusoidal Waves in Linear Impedance Networks
Summary
Problems
Review Questions
Integrate the Concepts
Practice Quiz
Appendices
1 Determinants
2 Calculus Derivations
2-1 Maxium Power-Transfer Theorem
2-2 Instantaneous Voltage in a cr Circuit
2-3 Energy Stored by a Capacitor
2-4 Instantaneous Current in an LR Circuit
2-5 Energy Stored by an Inductor
2-6 rms and Average Values of a Sine Wave
2-7 Inductive Reactance
2-8 Capacitive Reactance
2-9 General Transformer Equation
2-10 Maximum Transformer Efficiency
3 Multisim Schematic Capture and Simulation
Answers to Selected Problems
Glossary
Index
Alternative filename
lgrsnf/Introduction to Electric Circuits 10th Edition.pdf
Alternative filename
lgli/Introduction to Electric Circuits 10th Edition.pdf
Alternative author
Jackson, The late Herbert W., Temple, Dale, Kelly, Brian, Craigs, Karen, Fuentes, Lauren
Alternative author
Herbert W Jackson; Dale Temple; Brian Kelly; Karen Craigs; Lauren Fuentes; et al
Alternative author
Herbert Walter Jackson
Alternative publisher
IRL Press at Oxford University Press
Alternative publisher
Oxford Institute for Energy Studies
Alternative publisher
German Historical Institute London
Alternative publisher
OUP Canada
Alternative edition
United Kingdom and Ireland, United Kingdom
Alternative edition
Tenth edition, Don Mills, Ontario, 2019
Alternative edition
10, 2019-04-18
metadata comments
{"edition":"10","isbns":["019903141X","9780199031412"],"last_page":1088,"publisher":"Oxford University Press"}
Alternative description
"First published in 1959, Herbert Jackson's Introduction to Electric Circuits is a core text for introductory circuit analysis courses taught in electronics and electrical engineering technology programs. Praised for its clarity and accessibility and its comprehensive problem sets, the text set the standard for introductory circuit texts in this country and now distinguishes itself as the most accessible, student-friendly circuits text available. This tenth edition revision emphasizes 30% new questions found in-text and on end-of-chapter problem sets, review questions, and quizzes. It also includes new content on breadboards, colour codes for band resistors, digital multimeters, nodal analysis, and three-phase systems."-- Provided by publisher
date open sourced
2023-10-02
🚀 Fast downloads
Become a member to support the long-term preservation of books, papers, and more. To show our gratitude for your support, you get fast downloads. ❤️
- Option #1: Fast Partner Server #1 (recommended) (open in viewer) (no redirect) (short filename) (no browser verification or waitlists)
- Option #2: Fast Partner Server #2 (open in viewer) (no redirect) (short filename)
- Option #3: Fast Partner Server #3 (open in viewer) (no redirect) (short filename)
- Option #4: Fast Partner Server #4 (open in viewer) (no redirect) (short filename)
- Option #5: Fast Partner Server #5 (open in viewer) (no redirect) (short filename)
- Option #6: Fast Partner Server #6 (open in viewer) (no redirect) (short filename)
- Option #7: Fast Partner Server #7 (open in viewer) (no redirect) (short filename)
- Option #8: Fast Partner Server #8 (open in viewer) (no redirect) (short filename)
- Option #9: Fast Partner Server #9 (open in viewer) (no redirect) (short filename)
- Option #10: Fast Partner Server #10 (open in viewer) (no redirect) (short filename)
- Option #11: Fast Partner Server #11 (open in viewer) (no redirect) (short filename)
- Option #12: Fast Partner Server #12 (open in viewer) (no redirect) (short filename)
🐢 Slow downloads
From trusted partners. More information in the FAQ. (might require browser verification — unlimited downloads!)
- Option #1: Slow Partner Server #1 (slightly faster but with waitlist)
- Option #2: Slow Partner Server #2 (slightly faster but with waitlist)
- Option #3: Slow Partner Server #3 (no waitlist, but can be very slow)
- Option #4: Slow Partner Server #4 (slightly faster but with waitlist)
- Option #5: Slow Partner Server #5 (slightly faster but with waitlist)
- Option #6: Slow Partner Server #6 (no waitlist, but can be very slow)
- After downloading: Open in our viewer
External downloads
All download options have the same file, and should be safe to use. That said, always be cautious when downloading files from the internet, especially from sites external to Anna’s Archive. For example, be sure to keep your devices updated.
-
For large files, we recommend using a download manager to prevent interruptions.
Recommended download managers: JDownloader -
You will need an ebook or PDF reader to open the file, depending on the file format.
Recommended ebook readers: Anna’s Archive online viewer, ReadEra, and Calibre -
Use online tools to convert between formats.
Recommended conversion tools: CloudConvert -
You can send both PDF and EPUB files to your Kindle or Kobo eReader.
Recommended tools: Amazon‘s “Send to Kindle” and djazz‘s “Send to Kobo/Kindle” -
Support authors and libraries
✍️ If you like this and can afford it, consider buying the original, or supporting the authors directly.
📚 If this is available at your local library, consider borrowing it for free there.
Total downloads:
A “file MD5” is a hash that gets computed from the file contents, and is reasonably unique based on that content. All shadow libraries that we have indexed on here primarily use MD5s to identify files.
A file might appear in multiple shadow libraries. For information about the various datasets that we have compiled, see the Datasets page.
For information about this particular file, check out its JSON file. Live/debug JSON version. Live/debug page.